Agents - Part 2 - OpenAI Responses API and Agent SDK

Introduction

In a previous blog post, I explored various aspects of building AI agents, including coding agents, ReAct prompting, and tool-calling loops. Recently, OpenAI announced new tools for building agents, introducing the Responses API and Agents SDK. OpenAI set the standard with their Chat Completions API, which has been widely adopted and extended by developers.

However, it's important to remain cautious. Remember what happened to the Assistants API? It never fully emerged from beta and is scheduled to be sunset in 2026. In contrast, these new APIs are not marked as beta, indicating that OpenAI feels more confident about this direction. Given their prior success with the Chat Completions API, there's reason to be optimistic that they might achieve similar success again. OpenAI has likely incorporated key learnings from their experience with the Assistants API into these latest developments, making these new tools intriguing and well worth exploring further.

Responses API

OpenAI plans to continue supporting the Chat Completions API. However, for new projects, they recommend using the newly introduced Responses API.

One advantage of the Chat Completions API I've appreciated is its wide adoption by other LLM providers, making it easy to switch between services. Because of this flexibility, it may still be practical to use Chat Completions for some new projects. It remains to be seen whether other providers will adopt the Responses API as well.

Here's a screenshot from the OpenAI documentation explaining the Responses API:

Key points to note about the Responses API:

  • Stateful: It includes a previous_response_id to support long-running conversations.
  • It is distinctly different from the Chat Completions API.
  • If your application doesn't require built-in tools, you can confidently continue using Chat Completions.
  • When ready for advanced capabilities tailored to agent workflows, the Responses API is recommended.
  • The Responses API represents OpenAI's future direction for agent-building.

Quickstart

I'm not going to go over all the details of the Responses API, because that's what the docs are for. But I'm going to cover some things that are new to me.

from dotenv import load_dotenv
from openai import OpenAI

load_dotenv(dotenv_path='../../.env')

client = OpenAI()

response = client.responses.create(model="gpt-4o-mini", input="Tell a quick dad joke!")

print(response)
Response(id='resp_67f17dae5a248191ad48845675e5f0270ec9ac340ff2e128', created_at=1743879598.0, error=None, incomplete_details=None, instructions=None, metadata={}, model='gpt-4o-mini-2024-07-18', object='response', output=[ResponseOutputMessage(id='msg_67f17daf01d081919d4da886e8bbd6200ec9ac340ff2e128', content=[ResponseOutputText(annotations=[], text='Why did the scarecrow win an award? \n\nBecause he was outstanding in his field!', type='output_text')], role='assistant', status='completed', type='message')], parallel_tool_calls=True, temperature=1.0, tool_choice='auto', tools=[], top_p=1.0, max_output_tokens=None, previous_response_id=None, reasoning=Reasoning(effort=None, generate_summary=None), status='completed', text=ResponseTextConfig(format=ResponseFormatText(type='text')), truncation='disabled', usage=ResponseUsage(input_tokens=13, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=19, output_tokens_details=OutputTokensDetails(reasoning_tokens=0), total_tokens=32), user=None, store=True)
response.to_dict()
{'id': 'resp_67edbed0ea6081919ac9fbae7f5d43840bb7a39cd0aed44a',
 'created_at': 1743634128.0,
 'error': None,
 'incomplete_details': None,
 'instructions': None,
 'metadata': {},
 'model': 'gpt-4o-mini-2024-07-18',
 'object': 'response',
 'output': [{'id': 'msg_67edbed1635c8191b0520cf21f7902180bb7a39cd0aed44a',
   'content': [{'annotations': [],
     'text': 'Why did the scarecrow win an award? \n\nBecause he was outstanding in his field!',
     'type': 'output_text'}],
   'role': 'assistant',
   'status': 'completed',
   'type': 'message'}],
 'parallel_tool_calls': True,
 'temperature': 1.0,
 'tool_choice': 'auto',
 'tools': [],
 'top_p': 1.0,
 'max_output_tokens': None,
 'previous_response_id': None,
 'reasoning': {'effort': None, 'generate_summary': None},
 'status': 'completed',
 'text': {'format': {'type': 'text'}},
 'truncation': 'disabled',
 'usage': {'input_tokens': 13,
  'input_tokens_details': {'cached_tokens': 0},
  'output_tokens': 19,
  'output_tokens_details': {'reasoning_tokens': 0},
  'total_tokens': 32},
 'user': None,
 'store': True}
print(response.output[0].content[0].text)
Why did the scarecrow win an award? 

Because he was outstanding in his field!

Or a little shortcut:

print(response.output_text)
Why did the scarecrow win an award? 

Because he was outstanding in his field!
  • Response objects are saved for 30 days by default. You can disable this behavior by setting store to false when creating a Response.
  • Can be viewed in the dashboard logs page or retrieved via the API.

I never inspected traces in chat completions before because I don't think they are enabled by default. But here with Responses API, you can inspect traces by default for 30 days unless you disable it on the API call.

Or retrieve traces via the API.

client.responses.retrieve(response.id)
Response(id='resp_67edbed0ea6081919ac9fbae7f5d43840bb7a39cd0aed44a', created_at=1743634128.0, error=None, incomplete_details=None, instructions=None, metadata={}, model='gpt-4o-mini-2024-07-18', object='response', output=[ResponseOutputMessage(id='msg_67edbed1635c8191b0520cf21f7902180bb7a39cd0aed44a', content=[ResponseOutputText(annotations=[], text='Why did the scarecrow win an award? \n\nBecause he was outstanding in his field!', type='output_text')], role='assistant', status='completed', type='message')], parallel_tool_calls=True, temperature=1.0, tool_choice='auto', tools=[], top_p=1.0, max_output_tokens=None, previous_response_id=None, reasoning=Reasoning(effort=None, generate_summary=None), status='completed', text=ResponseTextConfig(format=ResponseFormatText(type='text')), truncation='disabled', usage=ResponseUsage(input_tokens=13, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=19, output_tokens_details=OutputTokensDetails(reasoning_tokens=0), total_tokens=32), user=None, store=True)

Instruction Following

response = client.responses.create(model="gpt-4o-mini", instructions="You return markdown and lots of emojis. ", input="Tell a quick dad joke!")
print(response.output_text)
Why did the scarecrow win an award? 🌾🏆

Because he was outstanding in his field! 😂

The instructions parameter gives the model high-level instructions on how it should behave while generating a response, including tone, goals, and examples of correct responses. Any instructions provided this way will take priority over a prompt in the input parameter. source

This example is roughly equivalent to:

response = client.responses.create(
    model="gpt-4o-mini",
    input=[{"role": "developer", "content": "You return markdown and lots of emojis. "}, {"role": "user", "content": "Tell a quick dad joke!"}],
)

print(response.output_text)
Why did the scarecrow win an award?  

Because he was outstanding in his field! 🌾😂

The argument instructions is used to insert a system (or developer) message as the first item in the model's context source.

response = client.responses.create(
    model="gpt-4o-mini",
    input=[{"role": "developer", "content": "You return markdown and lots of emojis. "}, {"role": "user", "content": "Tell a quick dad joke!"}],
    instructions="You must talk like a pirate and do not return any markdown or emojis.",
)

print(response.output_text)
Why did the pirate go to school? To improve his "arrrticulation!"

Conversation State

We can manually handle the chat history using alternating user and assistant messages, just as previously done with the chat completions API.

response = client.responses.create(
    model="gpt-4o-mini",
    input=[
        {"role": "developer", "content": "You are a helpful assistant."},
        {"role": "user", "content": "My name is Chris, and my age is 40."},
        {"role": "assistant", "content": "Nice to meet you, Chris!"},
        {"role": "user", "content": "How old am I?"},
    ],
)

print(response.output_text)
You're 40 years old.

Alternately, we can use the previous_response_id parameter to manage conversation state.

response = client.responses.create(
    model="gpt-4o-mini",
    input=[
        {"role": "developer", "content": "You are a helpful assistant."},
        {"role": "user", "content": "My name is Chris, and my age is 40."},
    ],
)

print(response.output_text)
print(response.id)
Nice to meet you, Chris! How can I assist you today?
resp_67edbef36968819181d0bb3ca233c9b2018e3a257691136c
response = client.responses.create(
    model="gpt-4o-mini",
    input=[
        {"role": "user", "content": "How old am I"},
    ],
    previous_response_id=response.id,
)
print(response.output_text)
print(response.id)
You mentioned that you are 40 years old.
resp_67edbef6e18881919dcb074c38a4e75e018e3a257691136c
response = client.responses.create(
    model="gpt-4o-mini",
    input=[
        {"role": "user", "content": "And what was my name?"},
    ],
    previous_response_id=response.id,
)
print(response.output_text)
print(response.id)
Your name is Chris.
resp_67edbef7fa90819186efba3354f2a0bd018e3a257691136c

When using previous_response_id, all previous input tokens for responses in the chain are billed as input tokens in the API source.

When you view the logs in dashboard for a message that used previous_response_id, there is a link/button to find the previous response.

When using previous_response_id, the instructions from a previous response will be not be carried over to the next response. This makes it simple to swap out system (or developer) messages in new responses source. The instructions parameter only applies to the current response generation request.

response = client.responses.create(
    model="gpt-4o-mini",
    input=[
        {"role": "user", "content": "What country is the city Toronto in?"},
    ],
    instructions="You only write lower case letters",
)
print(response.output_text)
response.id
toronto is in canada.
'resp_67edbefcba848191bbf8762e794e3144063735a4e8fd49c8'
response = client.responses.create(
    model="gpt-4o-mini",
    input=[
        {"role": "user", "content": "What country was it again?"},
    ],
    previous_response_id=response.id,
)
print(response.output_text)
Toronto is in Canada.
response = client.responses.create(
    model="gpt-4o-mini",
    input=[
        {"role": "user", "content": "I forget, what was it?"},
    ],
    instructions="You only write UPPER CASE letters",
    previous_response_id=response.id,
)
print(response.output_text)
TORONTO IS IN CANADA.

Of course there all the other OpenAI LLM goodies such as function calling, structured outputs, streaming, analyzing images, and so on. They even released a bunch of new audio features (see here and here) I'm just going to cover some thins that are new to me, as a way to get familiar with some of the new features.

Built-in tools

Something new here to me is the ability to use built-in tools with the Responses API. As of writing, the built-in tools include things like web search, file search, computer use, and function calling. I'm already familiar with tool/function calling. But let's take a look at some of these other tools.

# Importing these to make the output look nicer
from fasthtml.common import show
from monsterui.all import render_md

Web Search

response = client.responses.create(
    model="gpt-4o-mini",
    tools=[{"type": "web_search_preview"}],
    input="Did Alabama State win their first game of the March Madness tournament in 2025?",  # web_search_preview_2025_03_11 points to a dated version of the tool
)

show(render_md(response.output_text))

Alabama State won their first game in the 2025 NCAA Men's Basketball Tournament by defeating Saint Francis (PA) 70-68 in the First Four round. The game concluded with a dramatic last-second layup by Amarr Knox, who led the team with 16 points. (reuters.com)

In the subsequent first round, Alabama State faced the top-seeded Auburn Tigers and was defeated 83-63. Despite the loss, the Hornets' victory over Saint Francis marked their first NCAA Tournament win in the program's history. (wtop.com)

Alabama State's Historic NCAA Tournament Run:

response.to_dict()
{'id': 'resp_67edbf09d9588191a91f13d6104c5a320d2bf909fd3c9e1b',
 'created_at': 1743634185.0,
 'error': None,
 'incomplete_details': None,
 'instructions': None,
 'metadata': {},
 'model': 'gpt-4o-mini-2024-07-18',
 'object': 'response',
 'output': [{'id': 'ws_67edbf0a2498819184d034b0930e37460d2bf909fd3c9e1b',
   'status': 'completed',
   'type': 'web_search_call'},
  {'id': 'msg_67edbf0bf4b4819196f84b35112a4a0d0d2bf909fd3c9e1b',
   'content': [{'annotations': [{'end_index': 397,
       'start_index': 244,
       'title': 'Alabama State stuns Saint Francis for last-second First Four victory',
       'type': 'url_citation',
       'url': 'https://www.reuters.com/sports/basketball/alabama-state-stuns-saint-francis-last-second-first-four-victory-2025-03-19/?utm_source=openai'},
      {'end_index': 776,
       'start_index': 626,
       'title': 'No. 1 overall seed Auburn puts away Alabama State 83-63 to open March Madness - WTOP News',
       'type': 'url_citation',
       'url': 'https://wtop.com/ncaa-basketball/2025/03/no-1-overall-seed-auburn-puts-away-alabama-state-83-63-to-open-march-madness/?utm_source=openai'},
      {'end_index': 1038,
       'start_index': 830,
       'title': 'Alabama State stuns Saint Francis for last-second First Four victory',
       'type': 'url_citation',
       'url': 'https://www.reuters.com/sports/basketball/alabama-state-stuns-saint-francis-last-second-first-four-victory-2025-03-19/?utm_source=openai'}],
     'text': "Alabama State won their first game in the 2025 NCAA Men's Basketball Tournament by defeating Saint Francis (PA) 70-68 in the First Four round. The game concluded with a dramatic last-second layup by Amarr Knox, who led the team with 16 points. ([reuters.com](https://www.reuters.com/sports/basketball/alabama-state-stuns-saint-francis-last-second-first-four-victory-2025-03-19/?utm_source=openai))\n\nIn the subsequent first round, Alabama State faced the top-seeded Auburn Tigers and was defeated 83-63. Despite the loss, the Hornets' victory over Saint Francis marked their first NCAA Tournament win in the program's history. ([wtop.com](https://wtop.com/ncaa-basketball/2025/03/no-1-overall-seed-auburn-puts-away-alabama-state-83-63-to-open-march-madness/?utm_source=openai))\n\n\n## Alabama State's Historic NCAA Tournament Run:\n- [Alabama State stuns Saint Francis for last-second First Four victory](https://www.reuters.com/sports/basketball/alabama-state-stuns-saint-francis-last-second-first-four-victory-2025-03-19/?utm_source=openai) ",
     'type': 'output_text'}],
   'role': 'assistant',
   'status': 'completed',
   'type': 'message'}],
 'parallel_tool_calls': True,
 'temperature': 1.0,
 'tool_choice': 'auto',
 'tools': [{'type': 'web_search_preview',
   'search_context_size': 'medium',
   'user_location': {'type': 'approximate',
    'city': None,
    'country': 'US',
    'region': None,
    'timezone': None}}],
 'top_p': 1.0,
 'max_output_tokens': None,
 'previous_response_id': None,
 'reasoning': {'effort': None, 'generate_summary': None},
 'status': 'completed',
 'text': {'format': {'type': 'text'}},
 'truncation': 'disabled',
 'usage': {'input_tokens': 318,
  'input_tokens_details': {'cached_tokens': 0},
  'output_tokens': 291,
  'output_tokens_details': {'reasoning_tokens': 0},
  'total_tokens': 609},
 'user': None,
 'store': True}

You can also force the use of the web_search_preview tool by using the tool_choice parameter, and setting it to {type: "web_search_preview"}:

response = client.responses.create(
    model="gpt-4o-mini",
    tools=[{"type": "web_search_preview"}],
    tool_choice={"type": "web_search_preview"},
    input="Is there an upcoming federal election in Canada?",
)
show(render_md(response.output_text))

As of April 2, 2025, the next Canadian federal election is scheduled for October 20, 2025, in accordance with the fixed-date provisions of the Canada Elections Act. This date may be adjusted to October 27, 2025, to avoid conflicting with the Hindu festival of Diwali and municipal elections in Alberta. (en.m.wikipedia.org)

However, recent political developments have introduced the possibility of an earlier election. Prime Minister Justin Trudeau's minority government has faced internal challenges, including the resignation of Finance Minister Chrystia Freeland, who criticized Trudeau's leadership. Additionally, a significant number of Canadians have expressed a preference for an earlier election. A Nanos Research survey indicated that 46% of respondents would prefer the next federal election to occur before 2025. (ctvnews.ca)

Given these factors, while the next federal election is currently scheduled for October 2025, there is a possibility that it could be called earlier, depending on political developments and parliamentary dynamics.

Recent Developments in Canadian Federal Election Timing:

response.to_dict()
{'id': 'resp_67edbf0d8fe481919fdf71321c16b9ea001b9061119ef2f9',
 'created_at': 1743634189.0,
 'error': None,
 'incomplete_details': None,
 'instructions': None,
 'metadata': {},
 'model': 'gpt-4o-mini-2024-07-18',
 'object': 'response',
 'output': [{'id': 'ws_67edbf0da74081918431bf3330c3e50a001b9061119ef2f9',
   'status': 'completed',
   'type': 'web_search_call'},
  {'id': 'msg_67edbf0fe9788191b1eaeb310e55c7ce001b9061119ef2f9',
   'content': [{'annotations': [{'end_index': 407,
       'start_index': 303,
       'title': '45th Canadian federal election - Wikipedia',
       'type': 'url_citation',
       'url': 'https://en.m.wikipedia.org/wiki/45th_Canadian_federal_election?utm_source=openai'},
      {'end_index': 1079,
       'start_index': 909,
       'title': 'More Canadians want next federal election in 2024 than 2025: Nanos | CTV News',
       'type': 'url_citation',
       'url': 'https://www.ctvnews.ca/politics/nearly-1-in-2-canadians-would-prefer-the-next-federal-election-happen-before-2025-nanos-survey-1.6709260?utm_source=openai'},
      {'end_index': 1580,
       'start_index': 1359,
       'title': "Canada gov't could avoid confidence vote with slim mini budget, says source",
       'type': 'url_citation',
       'url': 'https://www.reuters.com/world/americas/canada-govt-could-avoid-confidence-vote-with-slim-mini-budget-says-source-2024-10-10/?utm_source=openai'},
      {'end_index': 1782,
       'start_index': 1583,
       'title': 'Canada PM Trudeau reflecting on criticism amid leadership crisis, says ally',
       'type': 'url_citation',
       'url': 'https://www.reuters.com/world/americas/special-election-loss-adds-misery-canada-pm-trudeau-2024-12-17/?utm_source=openai'}],
     'text': "As of April 2, 2025, the next Canadian federal election is scheduled for October 20, 2025, in accordance with the fixed-date provisions of the Canada Elections Act. This date may be adjusted to October 27, 2025, to avoid conflicting with the Hindu festival of Diwali and municipal elections in Alberta. ([en.m.wikipedia.org](https://en.m.wikipedia.org/wiki/45th_Canadian_federal_election?utm_source=openai))\n\nHowever, recent political developments have introduced the possibility of an earlier election. Prime Minister Justin Trudeau's minority government has faced internal challenges, including the resignation of Finance Minister Chrystia Freeland, who criticized Trudeau's leadership. Additionally, a significant number of Canadians have expressed a preference for an earlier election. A Nanos Research survey indicated that 46% of respondents would prefer the next federal election to occur before 2025. ([ctvnews.ca](https://www.ctvnews.ca/politics/nearly-1-in-2-canadians-would-prefer-the-next-federal-election-happen-before-2025-nanos-survey-1.6709260?utm_source=openai))\n\nGiven these factors, while the next federal election is currently scheduled for October 2025, there is a possibility that it could be called earlier, depending on political developments and parliamentary dynamics.\n\n\n## Recent Developments in Canadian Federal Election Timing:\n- [Canada gov't could avoid confidence vote with slim mini budget, says source](https://www.reuters.com/world/americas/canada-govt-could-avoid-confidence-vote-with-slim-mini-budget-says-source-2024-10-10/?utm_source=openai)\n- [Canada PM Trudeau reflecting on criticism amid leadership crisis, says ally](https://www.reuters.com/world/americas/special-election-loss-adds-misery-canada-pm-trudeau-2024-12-17/?utm_source=openai) ",
     'type': 'output_text'}],
   'role': 'assistant',
   'status': 'completed',
   'type': 'message'}],
 'parallel_tool_calls': True,
 'temperature': 1.0,
 'tool_choice': {'type': 'web_search_preview'},
 'tools': [{'type': 'web_search_preview',
   'search_context_size': 'medium',
   'user_location': {'type': 'approximate',
    'city': None,
    'country': 'US',
    'region': None,
    'timezone': None}}],
 'top_p': 1.0,
 'max_output_tokens': None,
 'previous_response_id': None,
 'reasoning': {'effort': None, 'generate_summary': None},
 'status': 'completed',
 'text': {'format': {'type': 'text'}},
 'truncation': 'disabled',
 'usage': {'input_tokens': 312,
  'input_tokens_details': {'cached_tokens': 0},
  'output_tokens': 401,
  'output_tokens_details': {'reasoning_tokens': 0},
  'total_tokens': 713},
 'user': None,
 'store': True}

Note that for a web search we have:

  • A web_search_call output item with the ID of the search call.
response.output[0]
ResponseFunctionWebSearch(id='ws_67edbf0da74081918431bf3330c3e50a001b9061119ef2f9', status='completed', type='web_search_call')
response.output[1].content[0].annotations
[AnnotationURLCitation(end_index=407, start_index=303, title='45th Canadian federal election - Wikipedia', type='url_citation', url='https://en.m.wikipedia.org/wiki/45th_Canadian_federal_election?utm_source=openai'),
 AnnotationURLCitation(end_index=1079, start_index=909, title='More Canadians want next federal election in 2024 than 2025: Nanos | CTV News', type='url_citation', url='https://www.ctvnews.ca/politics/nearly-1-in-2-canadians-would-prefer-the-next-federal-election-happen-before-2025-nanos-survey-1.6709260?utm_source=openai'),
 AnnotationURLCitation(end_index=1580, start_index=1359, title="Canada gov't could avoid confidence vote with slim mini budget, says source", type='url_citation', url='https://www.reuters.com/world/americas/canada-govt-could-avoid-confidence-vote-with-slim-mini-budget-says-source-2024-10-10/?utm_source=openai'),
 AnnotationURLCitation(end_index=1782, start_index=1583, title='Canada PM Trudeau reflecting on criticism amid leadership crisis, says ally', type='url_citation', url='https://www.reuters.com/world/americas/special-election-loss-adds-misery-canada-pm-trudeau-2024-12-17/?utm_source=openai')]
response.output[1].content[0].text
"As of April 2, 2025, the next Canadian federal election is scheduled for October 20, 2025, in accordance with the fixed-date provisions of the Canada Elections Act. This date may be adjusted to October 27, 2025, to avoid conflicting with the Hindu festival of Diwali and municipal elections in Alberta. ([en.m.wikipedia.org](https://en.m.wikipedia.org/wiki/45th_Canadian_federal_election?utm_source=openai))\n\nHowever, recent political developments have introduced the possibility of an earlier election. Prime Minister Justin Trudeau's minority government has faced internal challenges, including the resignation of Finance Minister Chrystia Freeland, who criticized Trudeau's leadership. Additionally, a significant number of Canadians have expressed a preference for an earlier election. A Nanos Research survey indicated that 46% of respondents would prefer the next federal election to occur before 2025. ([ctvnews.ca](https://www.ctvnews.ca/politics/nearly-1-in-2-canadians-would-prefer-the-next-federal-election-happen-before-2025-nanos-survey-1.6709260?utm_source=openai))\n\nGiven these factors, while the next federal election is currently scheduled for October 2025, there is a possibility that it could be called earlier, depending on political developments and parliamentary dynamics.\n\n\n## Recent Developments in Canadian Federal Election Timing:\n- [Canada gov't could avoid confidence vote with slim mini budget, says source](https://www.reuters.com/world/americas/canada-govt-could-avoid-confidence-vote-with-slim-mini-budget-says-source-2024-10-10/?utm_source=openai)\n- [Canada PM Trudeau reflecting on criticism amid leadership crisis, says ally](https://www.reuters.com/world/americas/special-election-loss-adds-misery-canada-pm-trudeau-2024-12-17/?utm_source=openai) "

To refine search results based on geography, you can specify an approximate user location using country, city, region, and/or timezone.

response = client.responses.create(
    model="gpt-4o-mini",
    tools=[
        {
            "type": "web_search_preview",
            "user_location": {
                "type": "approximate",
                "country": "CA",  #  two-letter ISO country code
                "city": "Halifax",  # free text strings
                "region": "Nova Scotia",  # free text strings
            },
        }
    ],
    input="What are the best restaurants around Halifax?",
)

show(render_md(response.output_text))

Halifax boasts a vibrant culinary scene with a diverse array of exceptional restaurants. Here are some top-rated establishments you might consider:

Bar Kismet Halifax, Canada A family-owned restaurant and bar in the North End, offering fresh seafood, handmade pasta, inventive cocktails, and curated wines. Recognized in Canada's 100 Best Restaurants 2023.

The Bicycle Thief Halifax, Canada An Italian restaurant located at 1475 Lower Water St, known for its fine dining experience and diverse menu.

Café Lunette Halifax, Canada A French café offering classic bistro fare with a focus on fresh local seafood, situated at 1741 Lower Water St.

Fawn Halifax, Canada An elegant space offering a diverse menu of North American dishes with Western European influences, located at 1589 South Park Street.

Highwayman Halifax, Canada An intimate eatery serving Spanish-inspired seafood, meat, and vegetable dishes, as well as tapas and pintxos, located at 1673 Barrington St.

The Wooden Monkey Halifax, Canada A restaurant known for its vegetarian and international cuisine, located at 1685 Argyle St.

The Five Fishermen Restaurant & Grill Halifax, Canada A seafood restaurant located at 1740 Argyle St, offering a variety of seafood dishes.

2 Doors Down Halifax, Canada A Canadian restaurant and wine bar located at 1533 Barrington St, known for its diverse menu and desserts.

The Stubborn Goat Gastropub Halifax, Canada A gastropub offering American cuisine, breakfast, and brunch, located at 1579 Grafton St.

The Foggy Goggle Halifax, Canada A restaurant serving burgers, bar food, and seafood, located at 1667 Argyle St.

These establishments offer a range of culinary experiences, from fine dining to casual eateries, reflecting the rich gastronomic landscape of Halifax.

The parameter search_context_size controls the number of search results. The tokens used by the search tool do not affect the context window of the main model. Choosing the search_context_size parameter is a trade-off between cost, quality, and latency. The available values are 'high', 'medium', and 'low'. The default is 'medium'. The pricing page has all the details

response = client.responses.create(
    model="gpt-4o",
    tools=[
        {
            "type": "web_search_preview",
            "user_location": {
                "type": "approximate",
            },
            "search_context_size": "high",
        }
    ],
    input="Give me a markdown table of all the 2025 March Madness games and scores that have been played so far.",
)

show(render_md(response.output_text))

Here is a markdown table summarizing the 2025 NCAA Men's Basketball Tournament games and scores played up to April 2, 2025:

Round Date Matchup Score
First Four March 18, 2025 (16) Alabama State vs. (16) Saint Francis 70-68
(11) North Carolina vs. (11) San Diego State 95-68
March 19, 2025 (16) Mount St. Mary's vs. (16) American University 83-72
(11) Xavier vs. (11) Texas 86-80
First Round March 20, 2025 (9) Creighton vs. (8) Louisville 89-75
(4) Purdue vs. (13) High Point 75-63
(3) Wisconsin vs. (14) Montana 85-66
(1) Houston vs. (16) SIU Edwardsville 78-40
(1) Auburn vs. (16) Alabama State 83-63
(12) McNeese vs. (5) Clemson 69-67
(6) BYU vs. (11) VCU 80-71
(8) Gonzaga vs. (9) Georgia 89-68
(2) Tennessee vs. (15) Wofford 77-62
(10) Arkansas vs. (7) Kansas 79-72
(4) Texas A&M vs. (13) Yale 80-71
(11) Drake vs. (6) Missouri 67-57
(7) UCLA vs. (10) Utah State 72-47
(2) St. John's vs. (15) Omaha 83-53
(5) Michigan vs. (12) UC San Diego 68-65
(3) Texas Tech vs. (14) UNC Wilmington 82-72
March 21, 2025 (9) Baylor vs. (8) Mississippi State 75-72
(2) Alabama vs. (15) Robert Morris 90-80
(3) Iowa State vs. (14) Lipscomb 82-55
(12) Colorado State vs. (5) Memphis 78-70
(1) Duke vs. (16) Mount St. Mary's 93-49
(7) Saint Mary's vs. (10) Vanderbilt 59-56
(6) Ole Miss vs. (11) North Carolina 71-64
(4) Maryland vs. (13) Grand Canyon 81-49
(1) Florida vs. (16) Norfolk State 95-69
(3) Kentucky vs. (14) Troy 76-57
(10) New Mexico vs. (7) Marquette 75-66
(4) Arizona vs. (13) Akron 93-65
(8) UConn vs. (9) Oklahoma 67-59
(6) Illinois vs. (11) Xavier 86-73
(2) Michigan State vs. (15) Bryant 87-62
(5) Oregon vs. (12) Liberty 81-52
Second Round March 22, 2025 (4) Purdue vs. (12) McNeese 76-72
(10) Arkansas vs. (2) St. John's 75-66
(5) Michigan vs. (4) Texas A&M 91-79
(3) Texas Tech vs. (11) Drake 77-64
(1) Auburn vs. (9) Creighton 82-70
(6) BYU vs. (3) Wisconsin 91-89
(1) Houston vs. (8) Gonzaga 81-76
(2) Tennessee vs. (7) UCLA 67-58
March 23, 2025 (1) Florida vs. (8) UConn 77-75
(1) Duke vs. (9) Baylor 89-66
(3) Kentucky vs. (6) Illinois 84-75
(2) Alabama vs. (7) Saint Mary's 80-66
(4) Maryland vs. (12) Colorado State 72-71
(6) Ole Miss vs. (3) Iowa State 91-78
(2) Michigan State vs. (10) New Mexico 71-63
(4) Arizona vs. (5) Oregon 87-83
Sweet 16 March 27, 2025 (2) Alabama vs. (6) BYU 113-88
(1) Florida vs. (4) Maryland 87-71
(1) Duke vs. (4) Arizona 100-93
(3) Texas Tech vs. (10) Arkansas 85-83 (OT)
March 28, 2025 (2) Michigan State vs. (6) Ole Miss 73-70
(2) Tennessee vs. (3) Kentucky 78-

File Search

File search in the Responses API allows models to easily access information from previously uploaded files using semantic and keyword search. By uploading files to vector stores, you enhance the model's built-in knowledge without additional coding—OpenAI manages everything automatically. It's essentially RAG (Retrieval-Augmented Generation) hosted by OpenAI. The documentation is here.

TODO: Come back to this when interested.

Computer Use

TODO: Come back when interested. See here.

Agent SDK

This is what I came here to learn more about. I already wrote about agents part 1 extensively in a previous blog post, but I never used any frameworks. I built from scratch to understand the concepts.

There are a lot of pieces here that can be glued together, as seen from the OpenAI documentation here. Here is an image from their documentation showing the components:

Hello World

When you read the docs and try to run the opening example (which uses run_sync), it won't work from a notebook. run_sync is a convenience method that wraps async code to run synchronously by creating a new event loop. It's meant for simple synchronous scripts. However, this causes problems in environments that already have an event loop running, such as Jupyter notebooks, etc. So we will use run with await directly at the notebook level when required.

from agents import Agent, Runner

agent = Agent(name="Chris", instructions="You are a helpful assistant.")
result = await Runner.run(agent, "Hey")
print(result.final_output)
Hello! How can I assist you today?
result.to_input_list()
[{'content': 'Hey', 'role': 'user'},
 {'id': 'msg_67edbf2eb5d88191a3c25734c4d1164c05e7df807c96b84c',
  'content': [{'annotations': [],
    'text': 'Hello! How can I assist you today?',
    'type': 'output_text'}],
  'role': 'assistant',
  'status': 'completed',
  'type': 'message'}]
result
RunResult(input='Hey', new_items=[MessageOutputItem(agent=Agent(name='Chris', instructions='You are a helpful assistant.', handoff_description=None, handoffs=[], model=None, model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item=ResponseOutputMessage(id='msg_67edbf2eb5d88191a3c25734c4d1164c05e7df807c96b84c', content=[ResponseOutputText(annotations=[], text='Hello! How can I assist you today?', type='output_text')], role='assistant', status='completed', type='message'), type='message_output_item')], raw_responses=[ModelResponse(output=[ResponseOutputMessage(id='msg_67edbf2eb5d88191a3c25734c4d1164c05e7df807c96b84c', content=[ResponseOutputText(annotations=[], text='Hello! How can I assist you today?', type='output_text')], role='assistant', status='completed', type='message')], usage=Usage(requests=1, input_tokens=18, output_tokens=10, total_tokens=28), referenceable_id='resp_67edbf2e63008191aef1f81260c10b1d05e7df807c96b84c')], final_output='Hello! How can I assist you today?', input_guardrail_results=[], output_guardrail_results=[], _last_agent=Agent(name='Chris', instructions='You are a helpful assistant.', handoff_description=None, handoffs=[], model=None, model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True))

Building an Agent with Coding Abilities

In my Part 1 blog post on agents, I implemented a CodeACT-style agent from scratch.
This agent was able to express all of its actions directly in code, rather than relying on JSON-style tools.

Now that we're using the OpenAI Agent SDK, we're limited to JSON-style tools, so we can't use the CodeACT approach directly.
I actually created an issue on the OpenAI Agents SDK GitHub repo to ask whether there are any future plans to support CodeACT-style agents within the SDK.
I think it would be a great addition, though it would likely require a fair amount of work to implement. There are no known plans at the time of writing this.

Anyway, back to the task at hand. Let's build an agent using the OpenAI Agent SDK that can write arbitrary Python code to solve a task.
We'll execute that code in a sandboxed environment using Modal. I also covered this in my Part 1 blog post.

Here is the code which uses Modal to execute the code in a sandboxed environment:

import json

import modal

# Create image with IPython installed
image = modal.Image.debian_slim().pip_install("ipython", "pandas")


# Create the driver program that will run in the sandbox
def create_driver_program():
    return """
import json
import sys
import re
from IPython.core.interactiveshell import InteractiveShell
from IPython.utils.io import capture_output

def strip_ansi_codes(text):
    ansi_escape = re.compile(r'\\x1B(?:[@-Z\\\\-_]|\\[[0-?]*[ -/]*[@-~])')
    return ansi_escape.sub('', text)

# Create a persistent IPython shell instance
shell = InteractiveShell()
shell.colors = 'NoColor'  # Disable color output
shell.autoindent = False  # Disable autoindent

# Keep reading commands from stdin
while True:
    try:
        # Read a line of JSON from stdin
        command = json.loads(input())
        code = command.get('code')
        
        if code is None:
            print(json.dumps({"error": "No code provided"}))
            continue
            
        # Execute the code and capture output
        with capture_output() as captured:
            result = shell.run_cell(code)

        # Clean the outputs
        stdout = strip_ansi_codes(captured.stdout)
        stderr = strip_ansi_codes(captured.stderr)
        error = strip_ansi_codes(str(result.error_in_exec)) if not result.success else None

        # Format the response
        response = {
            "stdout": stdout,
            "stderr": stderr,
            "success": result.success,
            "result": repr(result.result) if result.success else None,
            "error": error
        }
        
        # Send the response
        print(json.dumps(response), flush=True)
        
    except Exception as e:
        print(json.dumps({"error": strip_ansi_codes(str(e))}), flush=True)
"""


def create_sandbox(timeout=300):
    """Creates and returns a Modal sandbox running an IPython shell."""
    app = modal.App.lookup("ipython-sandbox", create_if_missing=True)

    # Create the sandbox with the driver program
    with modal.enable_output():
        sandbox = modal.Sandbox.create("python", "-c", create_driver_program(), image=image, app=app, timeout=timeout)

    return sandbox


def execute_python_code(code: str, sandbox=None) -> dict:
    created_sandbox = False
    if sandbox is None:
        sandbox = create_sandbox()
        created_sandbox = True
    # Send the code to the sandbox
    sandbox.stdin.write(json.dumps({"code": code}))
    sandbox.stdin.write("\n")
    sandbox.stdin.drain()

    # Get the response
    response = next(iter(sandbox.stdout))
    if created_sandbox:
        sandbox.terminate()
    return json.loads(response)

I will make it a tool that can be used by the agent. We will also add the WebSearchTool to the agent as well.

from agents import WebSearchTool, function_tool

sb = create_sandbox()


@function_tool()
def execute_code(code: str) -> dict:
    """Execute the given Python code in a sandboxed environment and return the output."""
    return execute_python_code(code, sb)
coding_instructions = """
You solve tasks using an agentic coding loop in Python.

Follow this loop carefully:

- Think and write code. Send the code to the execute_code tool.
- Get code output results back.
- Think again, improve or add more code.
- Get code output results back.
...
- Repeat until you've solved the problem completely.

If you encounter any errors:

- FIX THEM and continue the loop.
- If modules are not found, install them using: !pip install <package_name>

Never give up. Continue iterating until the task is fully solved.
The sandbox environment is safe, isolated, and supports running arbitrary Python code.
State is maintained between code snippets:
Variables and definitions persist across executions.
# first code snippet
x = 2
print(x)
# second code snippet in separate request
y = 6
print(x + y)  # This works because state persists

Begin your agentic coding loop!

"""

coding_agent = Agent(
    name="Code Agent",
    instructions=coding_instructions,
    model="gpt-4o",
    tools=[execute_code, WebSearchTool()],
)
result = await Runner.run(
    coding_agent,
    """
                          Use an open source weather API to get the temperature in Halifax, Nova Scotia for the last 60 days. 
                          Then fit a statistical model to predict the temperature for the next week. 
                          Print the final predictions in a table (markdown format).
                          Todays date is 2025-04-02.""",
    max_turns=20,
)
print(result.final_output)
Here's the markdown table with the predicted mean temperatures for Halifax, Nova Scotia, from April 1 to April 7, 2025:

```markdown
| Date                |   Predicted_Mean_Temperature |
|:--------------------|-----------------------------:|
| 2025-04-01 00:00:00 |                      3.30113 |
| 2025-04-02 00:00:00 |                      2.24348 |
| 2025-04-03 00:00:00 |                      2.5076  |
| 2025-04-04 00:00:00 |                      2.32606 |
| 2025-04-05 00:00:00 |                      2.01458 |
| 2025-04-06 00:00:00 |                      2.52581 |
| 2025-04-07 00:00:00 |                      2.66123 |
```

These predictions were generated using an ARIMA model based on the historical temperature data.

There are some different attributes that can be accessed on the result object. Here are some others worth noting:

print(result.input)

                          Use an open source weather API to get the temperature in Halifax, Nova Scotia for the last 60 days. 
                          Then fit a statistical model to predict the temperature for the next week. 
                          Print the final predictions in a table (markdown format).
                          Todays date is 2025-04-02.
for r in result.raw_responses:
    print(r)
ModelResponse(output=[ResponseFunctionWebSearch(id='ws_67edcd295da481919095a35d1770ce060e2583e709c47d03', status='completed', type='web_search_call'), ResponseOutputMessage(id='msg_67edcd2b183081919aae61ed7d739ca60e2583e709c47d03', content=[ResponseOutputText(annotations=[AnnotationURLCitation(end_index=358, start_index=239, title='🏛️ Historical Weather API | Open-Meteo.com', type='url_citation', url='https://open-meteo-website.pages.dev/en/docs/historical-weather-api?utm_source=openai')], text='To obtain the temperature data for Halifax, Nova Scotia over the past 60 days and predict the temperatures for the next week, we can utilize the Open-Meteo API, which provides free access to historical weather data for non-commercial use. ([open-meteo-website.pages.dev](https://open-meteo-website.pages.dev/en/docs/historical-weather-api?utm_source=openai))\n\n**Step 1: Retrieve Historical Weather Data**\n\nWe\'ll use the Open-Meteo Historical Weather API to fetch daily mean temperatures for Halifax from February 1, 2025, to April 2, 2025. The API requires latitude and longitude coordinates for the location. For Halifax, Nova Scotia, the approximate coordinates are:\n\n- Latitude: 44.6488\n- Longitude: -63.5752\n\nThe API endpoint for historical weather data is:\n\n```\nhttps://archive-api.open-meteo.com/v1/archive\n```\n\nWe\'ll make a GET request to this endpoint with the following parameters:\n\n- `latitude`: 44.6488\n- `longitude`: -63.5752\n- `start_date`: 2025-02-01\n- `end_date`: 2025-04-02\n- `daily`: temperature_2m_max,temperature_2m_min\n- `timezone`: America/Halifax\n\n**Step 2: Fit a Statistical Model**\n\nAfter retrieving the historical temperature data, we\'ll fit a time series model to predict the daily mean temperatures for the next seven days (April 3 to April 9, 2025). A common approach is to use an Autoregressive Integrated Moving Average (ARIMA) model, which is suitable for time series forecasting.\n\n**Step 3: Generate Predictions**\n\nUsing the fitted ARIMA model, we\'ll forecast the daily mean temperatures for the specified dates.\n\n**Step 4: Display Predictions in a Markdown Table**\n\nFinally, we\'ll present the predicted temperatures in a markdown-formatted table for clarity.\n\nLet\'s proceed with the implementation:\n\n```python\nimport requests\nimport pandas as pd\nfrom statsmodels.tsa.arima.model import ARIMA\nimport matplotlib.pyplot as plt\n\n# Step 1: Retrieve Historical Weather Data\nlatitude = 44.6488\nlongitude = -63.5752\nstart_date = "2025-02-01"\nend_date = "2025-04-02"\ntimezone = "America/Halifax"\n\nurl = f"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}"\n\nresponse = requests.get(url)\ndata = response.json()\n\n# Extract dates and temperatures\ndates = data[\'daily\'][\'time\']\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\n\n# Calculate mean temperatures\ntemp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\n\n# Create a DataFrame\ndf = pd.DataFrame({\'Date\': pd.to_datetime(dates), \'Mean_Temperature\': temp_mean})\n\n# Step 2: Fit a Statistical Model\n# Set the date as the index\ndf.set_index(\'Date\', inplace=True)\n\n# Fit an ARIMA model\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))  # ARIMA(p, d, q)\nmodel_fit = model.fit()\n\n# Step 3: Generate Predictions\nforecast = model_fit.forecast(steps=7)\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\n\n# Step 4: Display Predictions in a Markdown Table\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\nforecast_df.reset_index(drop=True, inplace=True)\n\n# Convert DataFrame to markdown table\nmarkdown_table = forecast_df.to_markdown(index=False)\n\nprint(markdown_table)\n```\n\n**Note**: Ensure that the required libraries (`requests`, `pandas`, `statsmodels`, and `matplotlib`) are installed in your Python environment. You can install them using pip if they are not already installed:\n\n```\npip install requests pandas statsmodels matplotlib\n```\n\nThis script will output a markdown-formatted table with the predicted mean temperatures for Halifax, Nova Scotia, from April 3 to April 9, 2025. ', type='output_text')], role='assistant', status='completed', type='message'), ResponseFunctionToolCall(arguments='{"code":"import requests\\nimport pandas as pd\\nfrom statsmodels.tsa.arima.model import ARIMA\\n\\n# Step 1: Retrieve Historical Weather Data\\nlatitude = 44.6488\\nlongitude = -63.5752\\nstart_date = \\"2025-02-01\\"\\nend_date = \\"2025-04-02\\"\\ntimezone = \\"America/Halifax\\"\\n\\nurl = f\\"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}\\"\\n\\nresponse = requests.get(url)\\ndata = response.json()\\n\\n# Extract dates and temperatures\\ndates = data[\'daily\'][\'time\']\\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\\n\\n# Calculate mean temperatures\\ntemp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\\n\\n# Create a DataFrame\\ndf = pd.DataFrame({\'Date\': pd.to_datetime(dates), \'Mean_Temperature\': temp_mean})\\n\\n# Step 2: Fit a Statistical Model\\n# Set the date as the index\\ndf.set_index(\'Date\', inplace=True)\\n\\n# Fit an ARIMA model\\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))  # ARIMA(p, d, q)\\nmodel_fit = model.fit()\\n\\n# Step 3: Generate Predictions\\nforecast = model_fit.forecast(steps=7)\\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\\n\\n# Step 4: Display Predictions in a Markdown Table\\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\\nforecast_df.reset_index(drop=True, inplace=True)\\n\\n# Convert DataFrame to markdown table\\nmarkdown_table = forecast_df.to_markdown(index=False)\\nmarkdown_table"}', call_id='call_VAfl2mzns1fu8Qwuyq5qsS3X', name='execute_code', type='function_call', id='fc_67edcd31b0b08191b7560341e4391ec00e2583e709c47d03', status='completed')], usage=Usage(requests=1, input_tokens=2201, output_tokens=1429, total_tokens=3630), referenceable_id='resp_67edcd28b498819195f72fbe7bb201eb0e2583e709c47d03')
ModelResponse(output=[ResponseFunctionToolCall(arguments='{"code":"!pip install requests pandas statsmodels"}', call_id='call_HvXhf4h3CrjJ6GSrvuWhVvjf', name='execute_code', type='function_call', id='fc_67edcd45600481919d6193d8c7b83e2f0e2583e709c47d03', status='completed')], usage=Usage(requests=1, input_tokens=2166, output_tokens=21, total_tokens=2187), referenceable_id='resp_67edcd442d588191b50b9771205708190e2583e709c47d03')
ModelResponse(output=[ResponseFunctionToolCall(arguments='{"code":"import requests\\nimport pandas as pd\\nfrom statsmodels.tsa.arima.model import ARIMA\\n\\n# Step 1: Retrieve Historical Weather Data\\nlatitude = 44.6488\\nlongitude = -63.5752\\nstart_date = \\"2025-02-01\\"\\nend_date = \\"2025-04-02\\"\\ntimezone = \\"America/Halifax\\"\\n\\nurl = f\\"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}\\"\\n\\nresponse = requests.get(url)\\ndata = response.json()\\n\\n# Extract dates and temperatures\\ndates = data[\'daily\'][\'time\']\\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\\n\\n# Calculate mean temperatures\\ntemp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\\n\\n# Create a DataFrame\\ndf = pd.DataFrame({\'Date\': pd.to_datetime(dates), \'Mean_Temperature\': temp_mean})\\n\\n# Step 2: Fit a Statistical Model\\n# Set the date as the index\\ndf.set_index(\'Date\', inplace=True)\\n\\n# Fit an ARIMA model\\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))  # ARIMA(p, d, q)\\nmodel_fit = model.fit()\\n\\n# Step 3: Generate Predictions\\nforecast = model_fit.forecast(steps=7)\\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\\n\\n# Step 4: Display Predictions in a Markdown Table\\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\\nforecast_df.reset_index(drop=True, inplace=True)\\n\\n# Convert DataFrame to markdown table\\nmarkdown_table = forecast_df.to_markdown(index=False)\\nmarkdown_table"}', call_id='call_Beq2SEw3yusSsGCbZdJJ7KDe', name='execute_code', type='function_call', id='fc_67edcd4f10808191b0ce69a2c6c8aee10e2583e709c47d03', status='completed')], usage=Usage(requests=1, input_tokens=3807, output_tokens=477, total_tokens=4284), referenceable_id='resp_67edcd4e5e8c8191bfd406ea1d7366ce0e2583e709c47d03')
ModelResponse(output=[ResponseOutputMessage(id='msg_67edcd54c7548191a2dda9de5b3a36960e2583e709c47d03', content=[ResponseOutputText(annotations=[], text="The error indicates that some of the temperature values are `None`. This can happen if the API returns missing data for certain days. To address this, we should filter out any `None` values before calculating the mean temperatures.\n\nLet's update the code to handle this situation and re-run the analysis.", type='output_text')], role='assistant', status='completed', type='message'), ResponseFunctionToolCall(arguments='{"code":"import requests\\nimport pandas as pd\\nfrom statsmodels.tsa.arima.model import ARIMA\\n\\n# Step 1: Retrieve Historical Weather Data\\nlatitude = 44.6488\\nlongitude = -63.5752\\nstart_date = \\"2025-02-01\\"\\nend_date = \\"2025-04-02\\"\\ntimezone = \\"America/Halifax\\"\\n\\nurl = f\\"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}\\"\\n\\nresponse = requests.get(url)\\ndata = response.json()\\n\\n# Extract dates and temperatures\\ndates = data[\'daily\'][\'time\']\\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\\n\\n# Calculate mean temperatures, excluding None values\\ntemp_mean = []\\nfor max_temp, min_temp in zip(temp_max, temp_min):\\n    if max_temp is not None and min_temp is not None:\\n        temp_mean.append((max_temp + min_temp) / 2)\\n    else:\\n        temp_mean.append(None)\\n\\n# Remove None values\\nvalid_temp_mean = [temp for temp in temp_mean if temp is not None]\\nvalid_dates = [date for temp, date in zip(temp_mean, dates) if temp is not None]\\n\\n# Create a DataFrame\\ndf = pd.DataFrame({\'Date\': pd.to_datetime(valid_dates), \'Mean_Temperature\': valid_temp_mean})\\n\\n# Step 2: Fit a Statistical Model\\n# Set the date as the index\\ndf.set_index(\'Date\', inplace=True)\\n\\n# Fit an ARIMA model\\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))\\nmodel_fit = model.fit()\\n\\n# Step 3: Generate Predictions\\nforecast = model_fit.forecast(steps=7)\\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\\n\\n# Step 4: Display Predictions in a Markdown Table\\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\\nforecast_df.reset_index(drop=True, inplace=True)\\n\\n# Convert DataFrame to markdown table\\nmarkdown_table = forecast_df.to_markdown(index=False)\\nmarkdown_table"}', call_id='call_QrNg66gRdebVc3jSr6eK4hPw', name='execute_code', type='function_call', id='fc_67edcd5691a48191920729697883e5110e2583e709c47d03', status='completed')], usage=Usage(requests=1, input_tokens=9275, output_tokens=616, total_tokens=9891), referenceable_id='resp_67edcd541e18819193853b625c519a380e2583e709c47d03')
ModelResponse(output=[ResponseFunctionToolCall(arguments='{"code":"!pip install tabulate"}', call_id='call_2saMOvIPSQs9ATZ72S5vNOWN', name='execute_code', type='function_call', id='fc_67edcd5d4ad08191a151d5e634e22e900e2583e709c47d03', status='completed')], usage=Usage(requests=1, input_tokens=6101, output_tokens=19, total_tokens=6120), referenceable_id='resp_67edcd5c2c1081919bf2593217f008cf0e2583e709c47d03')
ModelResponse(output=[ResponseFunctionToolCall(arguments='{"code":"import requests\\nimport pandas as pd\\nfrom statsmodels.tsa.arima.model import ARIMA\\n\\n# Step 1: Retrieve Historical Weather Data\\nlatitude = 44.6488\\nlongitude = -63.5752\\nstart_date = \\"2025-02-01\\"\\nend_date = \\"2025-04-02\\"\\ntimezone = \\"America/Halifax\\"\\n\\nurl = f\\"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}\\"\\n\\nresponse = requests.get(url)\\ndata = response.json()\\n\\n# Extract dates and temperatures\\ndates = data[\'daily\'][\'time\']\\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\\n\\n# Calculate mean temperatures, excluding None values\\ntemp_mean = []\\nfor max_temp, min_temp in zip(temp_max, temp_min):\\n    if max_temp is not None and min_temp is not None:\\n        temp_mean.append((max_temp + min_temp) / 2)\\n    else:\\n        temp_mean.append(None)\\n\\n# Remove None values\\nvalid_temp_mean = [temp for temp in temp_mean if temp is not None]\\nvalid_dates = [date for temp, date in zip(temp_mean, dates) if temp is not None]\\n\\n# Create a DataFrame\\ndf = pd.DataFrame({\'Date\': pd.to_datetime(valid_dates), \'Mean_Temperature\': valid_temp_mean})\\n\\n# Step 2: Fit a Statistical Model\\n# Set the date as the index\\ndf.set_index(\'Date\', inplace=True)\\n\\n# Fit an ARIMA model\\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))\\nmodel_fit = model.fit()\\n\\n# Step 3: Generate Predictions\\nforecast = model_fit.forecast(steps=7)\\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\\n\\n# Step 4: Display Predictions in a Markdown Table\\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\\nforecast_df.reset_index(drop=True, inplace=True)\\n\\n# Convert DataFrame to markdown table\\nmarkdown_table = forecast_df.to_markdown(index=False)\\nmarkdown_table"}', call_id='call_jLN6sUobJsXryX5lvfZ6uisV', name='execute_code', type='function_call', id='fc_67edcd5fd89481919fdac5c5368681160e2583e709c47d03', status='completed')], usage=Usage(requests=1, input_tokens=6269, output_tokens=555, total_tokens=6824), referenceable_id='resp_67edcd5f24548191a8717e5f050e2afc0e2583e709c47d03')
ModelResponse(output=[ResponseOutputMessage(id='msg_67edcd652b6c8191a4f014b972412d150e2583e709c47d03', content=[ResponseOutputText(annotations=[], text="Here's the markdown table with the predicted mean temperatures for Halifax, Nova Scotia, from April 1 to April 7, 2025:\n\n```markdown\n| Date                |   Predicted_Mean_Temperature |\n|:--------------------|-----------------------------:|\n| 2025-04-01 00:00:00 |                      3.30113 |\n| 2025-04-02 00:00:00 |                      2.24348 |\n| 2025-04-03 00:00:00 |                      2.5076  |\n| 2025-04-04 00:00:00 |                      2.32606 |\n| 2025-04-05 00:00:00 |                      2.01458 |\n| 2025-04-06 00:00:00 |                      2.52581 |\n| 2025-04-07 00:00:00 |                      2.66123 |\n```\n\nThese predictions were generated using an ARIMA model based on the historical temperature data.", type='output_text')], role='assistant', status='completed', type='message')], usage=Usage(requests=1, input_tokens=7405, output_tokens=228, total_tokens=7633), referenceable_id='resp_67edcd6459008191b5d4b9c62d8a2cff0e2583e709c47d03')
result.new_items
[ToolCallItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item=ResponseFunctionWebSearch(id='ws_67edcd295da481919095a35d1770ce060e2583e709c47d03', status='completed', type='web_search_call'), type='tool_call_item'),
 MessageOutputItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item=ResponseOutputMessage(id='msg_67edcd2b183081919aae61ed7d739ca60e2583e709c47d03', content=[ResponseOutputText(annotations=[AnnotationURLCitation(end_index=358, start_index=239, title='🏛️ Historical Weather API | Open-Meteo.com', type='url_citation', url='https://open-meteo-website.pages.dev/en/docs/historical-weather-api?utm_source=openai')], text='To obtain the temperature data for Halifax, Nova Scotia over the past 60 days and predict the temperatures for the next week, we can utilize the Open-Meteo API, which provides free access to historical weather data for non-commercial use. ([open-meteo-website.pages.dev](https://open-meteo-website.pages.dev/en/docs/historical-weather-api?utm_source=openai))\n\n**Step 1: Retrieve Historical Weather Data**\n\nWe\'ll use the Open-Meteo Historical Weather API to fetch daily mean temperatures for Halifax from February 1, 2025, to April 2, 2025. The API requires latitude and longitude coordinates for the location. For Halifax, Nova Scotia, the approximate coordinates are:\n\n- Latitude: 44.6488\n- Longitude: -63.5752\n\nThe API endpoint for historical weather data is:\n\n```\nhttps://archive-api.open-meteo.com/v1/archive\n```\n\nWe\'ll make a GET request to this endpoint with the following parameters:\n\n- `latitude`: 44.6488\n- `longitude`: -63.5752\n- `start_date`: 2025-02-01\n- `end_date`: 2025-04-02\n- `daily`: temperature_2m_max,temperature_2m_min\n- `timezone`: America/Halifax\n\n**Step 2: Fit a Statistical Model**\n\nAfter retrieving the historical temperature data, we\'ll fit a time series model to predict the daily mean temperatures for the next seven days (April 3 to April 9, 2025). A common approach is to use an Autoregressive Integrated Moving Average (ARIMA) model, which is suitable for time series forecasting.\n\n**Step 3: Generate Predictions**\n\nUsing the fitted ARIMA model, we\'ll forecast the daily mean temperatures for the specified dates.\n\n**Step 4: Display Predictions in a Markdown Table**\n\nFinally, we\'ll present the predicted temperatures in a markdown-formatted table for clarity.\n\nLet\'s proceed with the implementation:\n\n```python\nimport requests\nimport pandas as pd\nfrom statsmodels.tsa.arima.model import ARIMA\nimport matplotlib.pyplot as plt\n\n# Step 1: Retrieve Historical Weather Data\nlatitude = 44.6488\nlongitude = -63.5752\nstart_date = "2025-02-01"\nend_date = "2025-04-02"\ntimezone = "America/Halifax"\n\nurl = f"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}"\n\nresponse = requests.get(url)\ndata = response.json()\n\n# Extract dates and temperatures\ndates = data[\'daily\'][\'time\']\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\n\n# Calculate mean temperatures\ntemp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\n\n# Create a DataFrame\ndf = pd.DataFrame({\'Date\': pd.to_datetime(dates), \'Mean_Temperature\': temp_mean})\n\n# Step 2: Fit a Statistical Model\n# Set the date as the index\ndf.set_index(\'Date\', inplace=True)\n\n# Fit an ARIMA model\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))  # ARIMA(p, d, q)\nmodel_fit = model.fit()\n\n# Step 3: Generate Predictions\nforecast = model_fit.forecast(steps=7)\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\n\n# Step 4: Display Predictions in a Markdown Table\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\nforecast_df.reset_index(drop=True, inplace=True)\n\n# Convert DataFrame to markdown table\nmarkdown_table = forecast_df.to_markdown(index=False)\n\nprint(markdown_table)\n```\n\n**Note**: Ensure that the required libraries (`requests`, `pandas`, `statsmodels`, and `matplotlib`) are installed in your Python environment. You can install them using pip if they are not already installed:\n\n```\npip install requests pandas statsmodels matplotlib\n```\n\nThis script will output a markdown-formatted table with the predicted mean temperatures for Halifax, Nova Scotia, from April 3 to April 9, 2025. ', type='output_text')], role='assistant', status='completed', type='message'), type='message_output_item'),
 ToolCallItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item=ResponseFunctionToolCall(arguments='{"code":"import requests\\nimport pandas as pd\\nfrom statsmodels.tsa.arima.model import ARIMA\\n\\n# Step 1: Retrieve Historical Weather Data\\nlatitude = 44.6488\\nlongitude = -63.5752\\nstart_date = \\"2025-02-01\\"\\nend_date = \\"2025-04-02\\"\\ntimezone = \\"America/Halifax\\"\\n\\nurl = f\\"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}\\"\\n\\nresponse = requests.get(url)\\ndata = response.json()\\n\\n# Extract dates and temperatures\\ndates = data[\'daily\'][\'time\']\\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\\n\\n# Calculate mean temperatures\\ntemp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\\n\\n# Create a DataFrame\\ndf = pd.DataFrame({\'Date\': pd.to_datetime(dates), \'Mean_Temperature\': temp_mean})\\n\\n# Step 2: Fit a Statistical Model\\n# Set the date as the index\\ndf.set_index(\'Date\', inplace=True)\\n\\n# Fit an ARIMA model\\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))  # ARIMA(p, d, q)\\nmodel_fit = model.fit()\\n\\n# Step 3: Generate Predictions\\nforecast = model_fit.forecast(steps=7)\\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\\n\\n# Step 4: Display Predictions in a Markdown Table\\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\\nforecast_df.reset_index(drop=True, inplace=True)\\n\\n# Convert DataFrame to markdown table\\nmarkdown_table = forecast_df.to_markdown(index=False)\\nmarkdown_table"}', call_id='call_VAfl2mzns1fu8Qwuyq5qsS3X', name='execute_code', type='function_call', id='fc_67edcd31b0b08191b7560341e4391ec00e2583e709c47d03', status='completed'), type='tool_call_item'),
 ToolCallOutputItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item={'call_id': 'call_VAfl2mzns1fu8Qwuyq5qsS3X', 'output': '{\'stdout\': "---------------------------------------------------------------------------\\nModuleNotFoundError                       Traceback (most recent call last)\\nFile :1\\n----> 1 import requests\\n      2 import pandas as pd\\n      3 from statsmodels.tsa.arima.model import ARIMA\\n\\nModuleNotFoundError: No module named \'requests\'\\n", \'stderr\': \'\', \'success\': False, \'result\': None, \'error\': "No module named \'requests\'"}', 'type': 'function_call_output'}, output={'stdout': "---------------------------------------------------------------------------\nModuleNotFoundError                       Traceback (most recent call last)\nFile :1\n----> 1 import requests\n      2 import pandas as pd\n      3 from statsmodels.tsa.arima.model import ARIMA\n\nModuleNotFoundError: No module named 'requests'\n", 'stderr': '', 'success': False, 'result': None, 'error': "No module named 'requests'"}, type='tool_call_output_item'),
 ToolCallItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item=ResponseFunctionToolCall(arguments='{"code":"!pip install requests pandas statsmodels"}', call_id='call_HvXhf4h3CrjJ6GSrvuWhVvjf', name='execute_code', type='function_call', id='fc_67edcd45600481919d6193d8c7b83e2f0e2583e709c47d03', status='completed'), type='tool_call_item'),
 ToolCallOutputItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item={'call_id': 'call_HvXhf4h3CrjJ6GSrvuWhVvjf', 'output': "{'stdout': 'Collecting requests\\r\\n  Downloading requests-2.32.3-py3-none-any.whl.metadata (4.6 kB)\\r\\nRequirement already satisfied: pandas in /usr/local/lib/python3.11/site-packages (2.2.3)\\r\\nCollecting statsmodels\\r\\n  Downloading statsmodels-0.14.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (9.2 kB)\\r\\nRequirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/site-packages (from requests) (2.1.1)\\r\\nRequirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/site-packages (from requests) (3.6)\\r\\nCollecting urllib3<3,>=1.21.1 (from requests)\\r\\n  Downloading urllib3-2.3.0-py3-none-any.whl.metadata (6.5 kB)\\r\\nRequirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/site-packages (from requests) (2024.2.2)\\r\\nRequirement already satisfied: numpy>=1.23.2 in /usr/local/lib/python3.11/site-packages (from pandas) (1.26.4)\\r\\nRequirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/site-packages (from pandas) (2.9.0.post0)\\r\\nRequirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/site-packages (from pandas) (2024.2)\\r\\nRequirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/site-packages (from pandas) (2024.2)\\r\\nCollecting scipy!=1.9.2,>=1.8 (from statsmodels)\\r\\n  Downloading scipy-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB)\\r\\n     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/62.0 kB ? eta -:--:--\\r     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.0/62.0 kB 172.6 MB/s eta 0:00:00\\r\\nCollecting patsy>=0.5.6 (from statsmodels)\\r\\n  Downloading patsy-1.0.1-py2.py3-none-any.whl.metadata (3.3 kB)\\r\\nCollecting packaging>=21.3 (from statsmodels)\\r\\n  Downloading packaging-24.2-py3-none-any.whl.metadata (3.2 kB)\\r\\nRequirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)\\r\\nDownloading requests-2.32.3-py3-none-any.whl (64 kB)\\r\\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/64.9 kB ? eta -:--:--\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 64.9/64.9 kB 206.2 MB/s eta 0:00:00\\r\\nDownloading statsmodels-0.14.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB)\\r\\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/10.8 MB ? eta -:--:--\\r   ━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━ 6.6/10.8 MB 196.5 MB/s eta 0:00:01\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.8/10.8 MB 201.4 MB/s eta 0:00:00\\r\\nDownloading packaging-24.2-py3-none-any.whl (65 kB)\\r\\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/65.5 kB ? eta -:--:--\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 65.5/65.5 kB 211.7 MB/s eta 0:00:00\\r\\nDownloading patsy-1.0.1-py2.py3-none-any.whl (232 kB)\\r\\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/232.9 kB ? eta -:--:--\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 232.9/232.9 kB 220.5 MB/s eta 0:00:00\\r\\nDownloading scipy-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.6 MB)\\r\\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/37.6 MB ? eta -:--:--\\r   ━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.2/37.6 MB 157.6 MB/s eta 0:00:01\\r   ━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━ 11.4/37.6 MB 178.8 MB/s eta 0:00:01\\r   ━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━━━━━━━ 17.4/37.6 MB 176.5 MB/s eta 0:00:01\\r   ━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━ 23.3/37.6 MB 172.6 MB/s eta 0:00:01\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━ 29.3/37.6 MB 173.3 MB/s eta 0:00:01\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━ 35.4/37.6 MB 175.3 MB/s eta 0:00:01\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 37.6/37.6 MB 179.8 MB/s eta 0:00:00\\r\\nDownloading urllib3-2.3.0-py3-none-any.whl (128 kB)\\r\\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/128.4 kB ? eta -:--:--\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 128.4/128.4 kB 210.0 MB/s eta 0:00:00\\r\\nInstalling collected packages: urllib3, scipy, patsy, packaging, requests, statsmodels\\r\\nSuccessfully installed packaging-24.2 patsy-1.0.1 requests-2.32.3 scipy-1.15.2 statsmodels-0.14.4 urllib3-2.3.0\\r\\n\\r\\n[notice] A new release of pip is available: 24.0 -> 25.0.1\\r\\n[notice] To update, run: pip install --upgrade pip\\r\\n', 'stderr': '', 'success': True, 'result': 'None', 'error': None}", 'type': 'function_call_output'}, output={'stdout': 'Collecting requests\r\n  Downloading requests-2.32.3-py3-none-any.whl.metadata (4.6 kB)\r\nRequirement already satisfied: pandas in /usr/local/lib/python3.11/site-packages (2.2.3)\r\nCollecting statsmodels\r\n  Downloading statsmodels-0.14.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (9.2 kB)\r\nRequirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/site-packages (from requests) (2.1.1)\r\nRequirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/site-packages (from requests) (3.6)\r\nCollecting urllib3<3,>=1.21.1 (from requests)\r\n  Downloading urllib3-2.3.0-py3-none-any.whl.metadata (6.5 kB)\r\nRequirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/site-packages (from requests) (2024.2.2)\r\nRequirement already satisfied: numpy>=1.23.2 in /usr/local/lib/python3.11/site-packages (from pandas) (1.26.4)\r\nRequirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/site-packages (from pandas) (2.9.0.post0)\r\nRequirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/site-packages (from pandas) (2024.2)\r\nRequirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/site-packages (from pandas) (2024.2)\r\nCollecting scipy!=1.9.2,>=1.8 (from statsmodels)\r\n  Downloading scipy-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB)\r\n     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/62.0 kB ? eta -:--:--\r     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.0/62.0 kB 172.6 MB/s eta 0:00:00\r\nCollecting patsy>=0.5.6 (from statsmodels)\r\n  Downloading patsy-1.0.1-py2.py3-none-any.whl.metadata (3.3 kB)\r\nCollecting packaging>=21.3 (from statsmodels)\r\n  Downloading packaging-24.2-py3-none-any.whl.metadata (3.2 kB)\r\nRequirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)\r\nDownloading requests-2.32.3-py3-none-any.whl (64 kB)\r\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/64.9 kB ? eta -:--:--\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 64.9/64.9 kB 206.2 MB/s eta 0:00:00\r\nDownloading statsmodels-0.14.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB)\r\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/10.8 MB ? eta -:--:--\r   ━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━ 6.6/10.8 MB 196.5 MB/s eta 0:00:01\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.8/10.8 MB 201.4 MB/s eta 0:00:00\r\nDownloading packaging-24.2-py3-none-any.whl (65 kB)\r\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/65.5 kB ? eta -:--:--\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 65.5/65.5 kB 211.7 MB/s eta 0:00:00\r\nDownloading patsy-1.0.1-py2.py3-none-any.whl (232 kB)\r\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/232.9 kB ? eta -:--:--\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 232.9/232.9 kB 220.5 MB/s eta 0:00:00\r\nDownloading scipy-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.6 MB)\r\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/37.6 MB ? eta -:--:--\r   ━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.2/37.6 MB 157.6 MB/s eta 0:00:01\r   ━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━ 11.4/37.6 MB 178.8 MB/s eta 0:00:01\r   ━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━━━━━━━ 17.4/37.6 MB 176.5 MB/s eta 0:00:01\r   ━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━ 23.3/37.6 MB 172.6 MB/s eta 0:00:01\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━ 29.3/37.6 MB 173.3 MB/s eta 0:00:01\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━ 35.4/37.6 MB 175.3 MB/s eta 0:00:01\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 37.6/37.6 MB 179.8 MB/s eta 0:00:00\r\nDownloading urllib3-2.3.0-py3-none-any.whl (128 kB)\r\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/128.4 kB ? eta -:--:--\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 128.4/128.4 kB 210.0 MB/s eta 0:00:00\r\nInstalling collected packages: urllib3, scipy, patsy, packaging, requests, statsmodels\r\nSuccessfully installed packaging-24.2 patsy-1.0.1 requests-2.32.3 scipy-1.15.2 statsmodels-0.14.4 urllib3-2.3.0\r\n\r\n[notice] A new release of pip is available: 24.0 -> 25.0.1\r\n[notice] To update, run: pip install --upgrade pip\r\n', 'stderr': '', 'success': True, 'result': 'None', 'error': None}, type='tool_call_output_item'),
 ToolCallItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item=ResponseFunctionToolCall(arguments='{"code":"import requests\\nimport pandas as pd\\nfrom statsmodels.tsa.arima.model import ARIMA\\n\\n# Step 1: Retrieve Historical Weather Data\\nlatitude = 44.6488\\nlongitude = -63.5752\\nstart_date = \\"2025-02-01\\"\\nend_date = \\"2025-04-02\\"\\ntimezone = \\"America/Halifax\\"\\n\\nurl = f\\"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}\\"\\n\\nresponse = requests.get(url)\\ndata = response.json()\\n\\n# Extract dates and temperatures\\ndates = data[\'daily\'][\'time\']\\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\\n\\n# Calculate mean temperatures\\ntemp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\\n\\n# Create a DataFrame\\ndf = pd.DataFrame({\'Date\': pd.to_datetime(dates), \'Mean_Temperature\': temp_mean})\\n\\n# Step 2: Fit a Statistical Model\\n# Set the date as the index\\ndf.set_index(\'Date\', inplace=True)\\n\\n# Fit an ARIMA model\\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))  # ARIMA(p, d, q)\\nmodel_fit = model.fit()\\n\\n# Step 3: Generate Predictions\\nforecast = model_fit.forecast(steps=7)\\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\\n\\n# Step 4: Display Predictions in a Markdown Table\\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\\nforecast_df.reset_index(drop=True, inplace=True)\\n\\n# Convert DataFrame to markdown table\\nmarkdown_table = forecast_df.to_markdown(index=False)\\nmarkdown_table"}', call_id='call_Beq2SEw3yusSsGCbZdJJ7KDe', name='execute_code', type='function_call', id='fc_67edcd4f10808191b0ce69a2c6c8aee10e2583e709c47d03', status='completed'), type='tool_call_item'),
 ToolCallOutputItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item={'call_id': 'call_Beq2SEw3yusSsGCbZdJJ7KDe', 'output': '{\'stdout\': "---------------------------------------------------------------------------\\nTypeError                                 Traceback (most recent call last)\\nFile :23\\n     20 temp_min = data[\'daily\'][\'temperature_2m_min\']\\n     22 # Calculate mean temperatures\\n---> 23 temp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\\n     25 # Create a DataFrame\\n     26 df = pd.DataFrame({\'Date\': pd.to_datetime(dates), \'Mean_Temperature\': temp_mean})\\n\\nFile :23, in (.0)\\n     20 temp_min = data[\'daily\'][\'temperature_2m_min\']\\n     22 # Calculate mean temperatures\\n---> 23 temp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\\n     25 # Create a DataFrame\\n     26 df = pd.DataFrame({\'Date\': pd.to_datetime(dates), \'Mean_Temperature\': temp_mean})\\n\\nTypeError: unsupported operand type(s) for +: \'NoneType\' and \'NoneType\'\\n", \'stderr\': \'\', \'success\': False, \'result\': None, \'error\': "unsupported operand type(s) for +: \'NoneType\' and \'NoneType\'"}', 'type': 'function_call_output'}, output={'stdout': "---------------------------------------------------------------------------\nTypeError                                 Traceback (most recent call last)\nFile :23\n     20 temp_min = data['daily']['temperature_2m_min']\n     22 # Calculate mean temperatures\n---> 23 temp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\n     25 # Create a DataFrame\n     26 df = pd.DataFrame({'Date': pd.to_datetime(dates), 'Mean_Temperature': temp_mean})\n\nFile :23, in (.0)\n     20 temp_min = data['daily']['temperature_2m_min']\n     22 # Calculate mean temperatures\n---> 23 temp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\n     25 # Create a DataFrame\n     26 df = pd.DataFrame({'Date': pd.to_datetime(dates), 'Mean_Temperature': temp_mean})\n\nTypeError: unsupported operand type(s) for +: 'NoneType' and 'NoneType'\n", 'stderr': '', 'success': False, 'result': None, 'error': "unsupported operand type(s) for +: 'NoneType' and 'NoneType'"}, type='tool_call_output_item'),
 MessageOutputItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item=ResponseOutputMessage(id='msg_67edcd54c7548191a2dda9de5b3a36960e2583e709c47d03', content=[ResponseOutputText(annotations=[], text="The error indicates that some of the temperature values are `None`. This can happen if the API returns missing data for certain days. To address this, we should filter out any `None` values before calculating the mean temperatures.\n\nLet's update the code to handle this situation and re-run the analysis.", type='output_text')], role='assistant', status='completed', type='message'), type='message_output_item'),
 ToolCallItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item=ResponseFunctionToolCall(arguments='{"code":"import requests\\nimport pandas as pd\\nfrom statsmodels.tsa.arima.model import ARIMA\\n\\n# Step 1: Retrieve Historical Weather Data\\nlatitude = 44.6488\\nlongitude = -63.5752\\nstart_date = \\"2025-02-01\\"\\nend_date = \\"2025-04-02\\"\\ntimezone = \\"America/Halifax\\"\\n\\nurl = f\\"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}\\"\\n\\nresponse = requests.get(url)\\ndata = response.json()\\n\\n# Extract dates and temperatures\\ndates = data[\'daily\'][\'time\']\\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\\n\\n# Calculate mean temperatures, excluding None values\\ntemp_mean = []\\nfor max_temp, min_temp in zip(temp_max, temp_min):\\n    if max_temp is not None and min_temp is not None:\\n        temp_mean.append((max_temp + min_temp) / 2)\\n    else:\\n        temp_mean.append(None)\\n\\n# Remove None values\\nvalid_temp_mean = [temp for temp in temp_mean if temp is not None]\\nvalid_dates = [date for temp, date in zip(temp_mean, dates) if temp is not None]\\n\\n# Create a DataFrame\\ndf = pd.DataFrame({\'Date\': pd.to_datetime(valid_dates), \'Mean_Temperature\': valid_temp_mean})\\n\\n# Step 2: Fit a Statistical Model\\n# Set the date as the index\\ndf.set_index(\'Date\', inplace=True)\\n\\n# Fit an ARIMA model\\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))\\nmodel_fit = model.fit()\\n\\n# Step 3: Generate Predictions\\nforecast = model_fit.forecast(steps=7)\\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\\n\\n# Step 4: Display Predictions in a Markdown Table\\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\\nforecast_df.reset_index(drop=True, inplace=True)\\n\\n# Convert DataFrame to markdown table\\nmarkdown_table = forecast_df.to_markdown(index=False)\\nmarkdown_table"}', call_id='call_QrNg66gRdebVc3jSr6eK4hPw', name='execute_code', type='function_call', id='fc_67edcd5691a48191920729697883e5110e2583e709c47d03', status='completed'), type='tool_call_item'),
 ToolCallOutputItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item={'call_id': 'call_QrNg66gRdebVc3jSr6eK4hPw', 'output': '{\'stdout\': \'---------------------------------------------------------------------------\\nModuleNotFoundError                       Traceback (most recent call last)\\nFile /usr/local/lib/python3.11/site-packages/pandas/compat/_optional.py:135, in import_optional_dependency(name, extra, errors, min_version)\\n    134 try:\\n--> 135     module = importlib.import_module(name)\\n    136 except ImportError:\\n\\nFile /usr/local/lib/python3.11/importlib/__init__.py:126, in import_module(name, package)\\n    125         level += 1\\n--> 126 return _bootstrap._gcd_import(name[level:], package, level)\\n\\nFile :1206, in _gcd_import(name, package, level)\\n\\nFile :1178, in _find_and_load(name, import_)\\n\\nFile :1142, in _find_and_load_unlocked(name, import_)\\n\\nModuleNotFoundError: No module named \\\'tabulate\\\'\\n\\nDuring handling of the above exception, another exception occurred:\\n\\nImportError                               Traceback (most recent call last)\\nFile :54\\n     51 forecast_df.reset_index(drop=True, inplace=True)\\n     53 # Convert DataFrame to markdown table\\n---> 54 markdown_table = forecast_df.to_markdown(index=False)\\n     55 markdown_table\\n\\nFile /usr/local/lib/python3.11/site-packages/pandas/util/_decorators.py:333, in deprecate_nonkeyword_arguments..decorate..wrapper(*args, **kwargs)\\n    327 if len(args) > num_allow_args:\\n    328     warnings.warn(\\n    329         msg.format(arguments=_format_argument_list(allow_args)),\\n    330         FutureWarning,\\n    331         stacklevel=find_stack_level(),\\n    332     )\\n--> 333 return func(*args, **kwargs)\\n\\nFile /usr/local/lib/python3.11/site-packages/pandas/core/frame.py:2983, in DataFrame.to_markdown(self, buf, mode, index, storage_options, **kwargs)\\n   2981 kwargs.setdefault("tablefmt", "pipe")\\n   2982 kwargs.setdefault("showindex", index)\\n-> 2983 tabulate = import_optional_dependency("tabulate")\\n   2984 result = tabulate.tabulate(self, **kwargs)\\n   2985 if buf is None:\\n\\nFile /usr/local/lib/python3.11/site-packages/pandas/compat/_optional.py:138, in import_optional_dependency(name, extra, errors, min_version)\\n    136 except ImportError:\\n    137     if errors == "raise":\\n--> 138         raise ImportError(msg)\\n    139     return None\\n    141 # Handle submodules: if we have submodule, grab parent module from sys.modules\\n\\nImportError: Missing optional dependency \\\'tabulate\\\'.  Use pip or conda to install tabulate.\\n\', \'stderr\': \'/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\\n  self._init_dates(dates, freq)\\n/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\\n  self._init_dates(dates, freq)\\n/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\\n  self._init_dates(dates, freq)\\n\', \'success\': False, \'result\': None, \'error\': "Missing optional dependency \'tabulate\'.  Use pip or conda to install tabulate."}', 'type': 'function_call_output'}, output={'stdout': '---------------------------------------------------------------------------\nModuleNotFoundError                       Traceback (most recent call last)\nFile /usr/local/lib/python3.11/site-packages/pandas/compat/_optional.py:135, in import_optional_dependency(name, extra, errors, min_version)\n    134 try:\n--> 135     module = importlib.import_module(name)\n    136 except ImportError:\n\nFile /usr/local/lib/python3.11/importlib/__init__.py:126, in import_module(name, package)\n    125         level += 1\n--> 126 return _bootstrap._gcd_import(name[level:], package, level)\n\nFile :1206, in _gcd_import(name, package, level)\n\nFile :1178, in _find_and_load(name, import_)\n\nFile :1142, in _find_and_load_unlocked(name, import_)\n\nModuleNotFoundError: No module named \'tabulate\'\n\nDuring handling of the above exception, another exception occurred:\n\nImportError                               Traceback (most recent call last)\nFile :54\n     51 forecast_df.reset_index(drop=True, inplace=True)\n     53 # Convert DataFrame to markdown table\n---> 54 markdown_table = forecast_df.to_markdown(index=False)\n     55 markdown_table\n\nFile /usr/local/lib/python3.11/site-packages/pandas/util/_decorators.py:333, in deprecate_nonkeyword_arguments..decorate..wrapper(*args, **kwargs)\n    327 if len(args) > num_allow_args:\n    328     warnings.warn(\n    329         msg.format(arguments=_format_argument_list(allow_args)),\n    330         FutureWarning,\n    331         stacklevel=find_stack_level(),\n    332     )\n--> 333 return func(*args, **kwargs)\n\nFile /usr/local/lib/python3.11/site-packages/pandas/core/frame.py:2983, in DataFrame.to_markdown(self, buf, mode, index, storage_options, **kwargs)\n   2981 kwargs.setdefault("tablefmt", "pipe")\n   2982 kwargs.setdefault("showindex", index)\n-> 2983 tabulate = import_optional_dependency("tabulate")\n   2984 result = tabulate.tabulate(self, **kwargs)\n   2985 if buf is None:\n\nFile /usr/local/lib/python3.11/site-packages/pandas/compat/_optional.py:138, in import_optional_dependency(name, extra, errors, min_version)\n    136 except ImportError:\n    137     if errors == "raise":\n--> 138         raise ImportError(msg)\n    139     return None\n    141 # Handle submodules: if we have submodule, grab parent module from sys.modules\n\nImportError: Missing optional dependency \'tabulate\'.  Use pip or conda to install tabulate.\n', 'stderr': '/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\n  self._init_dates(dates, freq)\n/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\n  self._init_dates(dates, freq)\n/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\n  self._init_dates(dates, freq)\n', 'success': False, 'result': None, 'error': "Missing optional dependency 'tabulate'.  Use pip or conda to install tabulate."}, type='tool_call_output_item'),
 ToolCallItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item=ResponseFunctionToolCall(arguments='{"code":"!pip install tabulate"}', call_id='call_2saMOvIPSQs9ATZ72S5vNOWN', name='execute_code', type='function_call', id='fc_67edcd5d4ad08191a151d5e634e22e900e2583e709c47d03', status='completed'), type='tool_call_item'),
 ToolCallOutputItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item={'call_id': 'call_2saMOvIPSQs9ATZ72S5vNOWN', 'output': "{'stdout': 'Collecting tabulate\\r\\n  Downloading tabulate-0.9.0-py3-none-any.whl.metadata (34 kB)\\r\\nDownloading tabulate-0.9.0-py3-none-any.whl (35 kB)\\r\\nInstalling collected packages: tabulate\\r\\nSuccessfully installed tabulate-0.9.0\\r\\n\\r\\n[notice] A new release of pip is available: 24.0 -> 25.0.1\\r\\n[notice] To update, run: pip install --upgrade pip\\r\\n', 'stderr': '', 'success': True, 'result': 'None', 'error': None}", 'type': 'function_call_output'}, output={'stdout': 'Collecting tabulate\r\n  Downloading tabulate-0.9.0-py3-none-any.whl.metadata (34 kB)\r\nDownloading tabulate-0.9.0-py3-none-any.whl (35 kB)\r\nInstalling collected packages: tabulate\r\nSuccessfully installed tabulate-0.9.0\r\n\r\n[notice] A new release of pip is available: 24.0 -> 25.0.1\r\n[notice] To update, run: pip install --upgrade pip\r\n', 'stderr': '', 'success': True, 'result': 'None', 'error': None}, type='tool_call_output_item'),
 ToolCallItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item=ResponseFunctionToolCall(arguments='{"code":"import requests\\nimport pandas as pd\\nfrom statsmodels.tsa.arima.model import ARIMA\\n\\n# Step 1: Retrieve Historical Weather Data\\nlatitude = 44.6488\\nlongitude = -63.5752\\nstart_date = \\"2025-02-01\\"\\nend_date = \\"2025-04-02\\"\\ntimezone = \\"America/Halifax\\"\\n\\nurl = f\\"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}\\"\\n\\nresponse = requests.get(url)\\ndata = response.json()\\n\\n# Extract dates and temperatures\\ndates = data[\'daily\'][\'time\']\\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\\n\\n# Calculate mean temperatures, excluding None values\\ntemp_mean = []\\nfor max_temp, min_temp in zip(temp_max, temp_min):\\n    if max_temp is not None and min_temp is not None:\\n        temp_mean.append((max_temp + min_temp) / 2)\\n    else:\\n        temp_mean.append(None)\\n\\n# Remove None values\\nvalid_temp_mean = [temp for temp in temp_mean if temp is not None]\\nvalid_dates = [date for temp, date in zip(temp_mean, dates) if temp is not None]\\n\\n# Create a DataFrame\\ndf = pd.DataFrame({\'Date\': pd.to_datetime(valid_dates), \'Mean_Temperature\': valid_temp_mean})\\n\\n# Step 2: Fit a Statistical Model\\n# Set the date as the index\\ndf.set_index(\'Date\', inplace=True)\\n\\n# Fit an ARIMA model\\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))\\nmodel_fit = model.fit()\\n\\n# Step 3: Generate Predictions\\nforecast = model_fit.forecast(steps=7)\\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\\n\\n# Step 4: Display Predictions in a Markdown Table\\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\\nforecast_df.reset_index(drop=True, inplace=True)\\n\\n# Convert DataFrame to markdown table\\nmarkdown_table = forecast_df.to_markdown(index=False)\\nmarkdown_table"}', call_id='call_jLN6sUobJsXryX5lvfZ6uisV', name='execute_code', type='function_call', id='fc_67edcd5fd89481919fdac5c5368681160e2583e709c47d03', status='completed'), type='tool_call_item'),
 ToolCallOutputItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item={'call_id': 'call_jLN6sUobJsXryX5lvfZ6uisV', 'output': '{\'stdout\': "Out[1]: \'| Date                |   Predicted_Mean_Temperature |\\\\n|:--------------------|-----------------------------:|\\\\n| 2025-04-01 00:00:00 |                      3.30113 |\\\\n| 2025-04-02 00:00:00 |                      2.24348 |\\\\n| 2025-04-03 00:00:00 |                      2.5076  |\\\\n| 2025-04-04 00:00:00 |                      2.32606 |\\\\n| 2025-04-05 00:00:00 |                      2.01458 |\\\\n| 2025-04-06 00:00:00 |                      2.52581 |\\\\n| 2025-04-07 00:00:00 |                      2.66123 |\'\\n", \'stderr\': \'/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\\n  self._init_dates(dates, freq)\\n/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\\n  self._init_dates(dates, freq)\\n/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\\n  self._init_dates(dates, freq)\\n\', \'success\': True, \'result\': "\'| Date                |   Predicted_Mean_Temperature |\\\\n|:--------------------|-----------------------------:|\\\\n| 2025-04-01 00:00:00 |                      3.30113 |\\\\n| 2025-04-02 00:00:00 |                      2.24348 |\\\\n| 2025-04-03 00:00:00 |                      2.5076  |\\\\n| 2025-04-04 00:00:00 |                      2.32606 |\\\\n| 2025-04-05 00:00:00 |                      2.01458 |\\\\n| 2025-04-06 00:00:00 |                      2.52581 |\\\\n| 2025-04-07 00:00:00 |                      2.66123 |\'", \'error\': None}', 'type': 'function_call_output'}, output={'stdout': "Out[1]: '| Date                |   Predicted_Mean_Temperature |\\n|:--------------------|-----------------------------:|\\n| 2025-04-01 00:00:00 |                      3.30113 |\\n| 2025-04-02 00:00:00 |                      2.24348 |\\n| 2025-04-03 00:00:00 |                      2.5076  |\\n| 2025-04-04 00:00:00 |                      2.32606 |\\n| 2025-04-05 00:00:00 |                      2.01458 |\\n| 2025-04-06 00:00:00 |                      2.52581 |\\n| 2025-04-07 00:00:00 |                      2.66123 |'\n", 'stderr': '/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\n  self._init_dates(dates, freq)\n/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\n  self._init_dates(dates, freq)\n/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\n  self._init_dates(dates, freq)\n', 'success': True, 'result': "'| Date                |   Predicted_Mean_Temperature |\\n|:--------------------|-----------------------------:|\\n| 2025-04-01 00:00:00 |                      3.30113 |\\n| 2025-04-02 00:00:00 |                      2.24348 |\\n| 2025-04-03 00:00:00 |                      2.5076  |\\n| 2025-04-04 00:00:00 |                      2.32606 |\\n| 2025-04-05 00:00:00 |                      2.01458 |\\n| 2025-04-06 00:00:00 |                      2.52581 |\\n| 2025-04-07 00:00:00 |                      2.66123 |'", 'error': None}, type='tool_call_output_item'),
 MessageOutputItem(agent=Agent(name='Code Agent', instructions="\nYou solve tasks using an agentic coding loop in Python.\n\nFollow this loop carefully:\n\n- Think and write code. Send the code to the execute_code tool.\n- Get code output results back.\n- Think again, improve or add more code.\n- Get code output results back.\n...\n- Repeat until you've solved the problem completely.\n\nIf you encounter any errors:\n\n- FIX THEM and continue the loop.\n- If modules are not found, install them using: !pip install \n\nNever give up. Continue iterating until the task is fully solved.\nThe sandbox environment is safe, isolated, and supports running arbitrary Python code.\nState is maintained between code snippets:\nVariables and definitions persist across executions.\n# first code snippet\nx = 2\nprint(x)\n# second code snippet in separate request\ny = 6\nprint(x + y)  # This works because state persists\n\nBegin your agentic coding loop!\n\n", handoff_description=None, handoffs=[], model='gpt-4o', model_settings=ModelSettings(temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, tool_choice=None, parallel_tool_calls=False, truncation=None, max_tokens=None), tools=[FunctionTool(name='execute_code', description='Execute the given Python code in a sandboxed environment and return the output.', params_json_schema={'properties': {'code': {'title': 'Code', 'type': 'string'}}, 'required': ['code'], 'title': 'execute_code_args', 'type': 'object', 'additionalProperties': False}, on_invoke_tool=._create_function_tool.._on_invoke_tool at 0x10d8ea700>, strict_json_schema=True), WebSearchTool(user_location=None, search_context_size='medium')], mcp_servers=[], input_guardrails=[], output_guardrails=[], output_type=None, hooks=None, tool_use_behavior='run_llm_again', reset_tool_choice=True), raw_item=ResponseOutputMessage(id='msg_67edcd652b6c8191a4f014b972412d150e2583e709c47d03', content=[ResponseOutputText(annotations=[], text="Here's the markdown table with the predicted mean temperatures for Halifax, Nova Scotia, from April 1 to April 7, 2025:\n\n```markdown\n| Date                |   Predicted_Mean_Temperature |\n|:--------------------|-----------------------------:|\n| 2025-04-01 00:00:00 |                      3.30113 |\n| 2025-04-02 00:00:00 |                      2.24348 |\n| 2025-04-03 00:00:00 |                      2.5076  |\n| 2025-04-04 00:00:00 |                      2.32606 |\n| 2025-04-05 00:00:00 |                      2.01458 |\n| 2025-04-06 00:00:00 |                      2.52581 |\n| 2025-04-07 00:00:00 |                      2.66123 |\n```\n\nThese predictions were generated using an ARIMA model based on the historical temperature data.", type='output_text')], role='assistant', status='completed', type='message'), type='message_output_item')]
result.to_input_list()
[{'content': '\n                          Use an open source weather API to get the temperature in Halifax, Nova Scotia for the last 60 days. \n                          Then fit a statistical model to predict the temperature for the next week. \n                          Print the final predictions in a table (markdown format).\n                          Todays date is 2025-04-02.',
  'role': 'user'},
 {'id': 'ws_67edcd295da481919095a35d1770ce060e2583e709c47d03',
  'status': 'completed',
  'type': 'web_search_call'},
 {'id': 'msg_67edcd2b183081919aae61ed7d739ca60e2583e709c47d03',
  'content': [{'annotations': [{'end_index': 358,
      'start_index': 239,
      'title': '🏛️ Historical Weather API | Open-Meteo.com',
      'type': 'url_citation',
      'url': 'https://open-meteo-website.pages.dev/en/docs/historical-weather-api?utm_source=openai'}],
    'text': 'To obtain the temperature data for Halifax, Nova Scotia over the past 60 days and predict the temperatures for the next week, we can utilize the Open-Meteo API, which provides free access to historical weather data for non-commercial use. ([open-meteo-website.pages.dev](https://open-meteo-website.pages.dev/en/docs/historical-weather-api?utm_source=openai))\n\n**Step 1: Retrieve Historical Weather Data**\n\nWe\'ll use the Open-Meteo Historical Weather API to fetch daily mean temperatures for Halifax from February 1, 2025, to April 2, 2025. The API requires latitude and longitude coordinates for the location. For Halifax, Nova Scotia, the approximate coordinates are:\n\n- Latitude: 44.6488\n- Longitude: -63.5752\n\nThe API endpoint for historical weather data is:\n\n```\nhttps://archive-api.open-meteo.com/v1/archive\n```\n\nWe\'ll make a GET request to this endpoint with the following parameters:\n\n- `latitude`: 44.6488\n- `longitude`: -63.5752\n- `start_date`: 2025-02-01\n- `end_date`: 2025-04-02\n- `daily`: temperature_2m_max,temperature_2m_min\n- `timezone`: America/Halifax\n\n**Step 2: Fit a Statistical Model**\n\nAfter retrieving the historical temperature data, we\'ll fit a time series model to predict the daily mean temperatures for the next seven days (April 3 to April 9, 2025). A common approach is to use an Autoregressive Integrated Moving Average (ARIMA) model, which is suitable for time series forecasting.\n\n**Step 3: Generate Predictions**\n\nUsing the fitted ARIMA model, we\'ll forecast the daily mean temperatures for the specified dates.\n\n**Step 4: Display Predictions in a Markdown Table**\n\nFinally, we\'ll present the predicted temperatures in a markdown-formatted table for clarity.\n\nLet\'s proceed with the implementation:\n\n```python\nimport requests\nimport pandas as pd\nfrom statsmodels.tsa.arima.model import ARIMA\nimport matplotlib.pyplot as plt\n\n# Step 1: Retrieve Historical Weather Data\nlatitude = 44.6488\nlongitude = -63.5752\nstart_date = "2025-02-01"\nend_date = "2025-04-02"\ntimezone = "America/Halifax"\n\nurl = f"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}"\n\nresponse = requests.get(url)\ndata = response.json()\n\n# Extract dates and temperatures\ndates = data[\'daily\'][\'time\']\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\n\n# Calculate mean temperatures\ntemp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\n\n# Create a DataFrame\ndf = pd.DataFrame({\'Date\': pd.to_datetime(dates), \'Mean_Temperature\': temp_mean})\n\n# Step 2: Fit a Statistical Model\n# Set the date as the index\ndf.set_index(\'Date\', inplace=True)\n\n# Fit an ARIMA model\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))  # ARIMA(p, d, q)\nmodel_fit = model.fit()\n\n# Step 3: Generate Predictions\nforecast = model_fit.forecast(steps=7)\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\n\n# Step 4: Display Predictions in a Markdown Table\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\nforecast_df.reset_index(drop=True, inplace=True)\n\n# Convert DataFrame to markdown table\nmarkdown_table = forecast_df.to_markdown(index=False)\n\nprint(markdown_table)\n```\n\n**Note**: Ensure that the required libraries (`requests`, `pandas`, `statsmodels`, and `matplotlib`) are installed in your Python environment. You can install them using pip if they are not already installed:\n\n```\npip install requests pandas statsmodels matplotlib\n```\n\nThis script will output a markdown-formatted table with the predicted mean temperatures for Halifax, Nova Scotia, from April 3 to April 9, 2025. ',
    'type': 'output_text'}],
  'role': 'assistant',
  'status': 'completed',
  'type': 'message'},
 {'arguments': '{"code":"import requests\\nimport pandas as pd\\nfrom statsmodels.tsa.arima.model import ARIMA\\n\\n# Step 1: Retrieve Historical Weather Data\\nlatitude = 44.6488\\nlongitude = -63.5752\\nstart_date = \\"2025-02-01\\"\\nend_date = \\"2025-04-02\\"\\ntimezone = \\"America/Halifax\\"\\n\\nurl = f\\"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}\\"\\n\\nresponse = requests.get(url)\\ndata = response.json()\\n\\n# Extract dates and temperatures\\ndates = data[\'daily\'][\'time\']\\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\\n\\n# Calculate mean temperatures\\ntemp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\\n\\n# Create a DataFrame\\ndf = pd.DataFrame({\'Date\': pd.to_datetime(dates), \'Mean_Temperature\': temp_mean})\\n\\n# Step 2: Fit a Statistical Model\\n# Set the date as the index\\ndf.set_index(\'Date\', inplace=True)\\n\\n# Fit an ARIMA model\\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))  # ARIMA(p, d, q)\\nmodel_fit = model.fit()\\n\\n# Step 3: Generate Predictions\\nforecast = model_fit.forecast(steps=7)\\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\\n\\n# Step 4: Display Predictions in a Markdown Table\\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\\nforecast_df.reset_index(drop=True, inplace=True)\\n\\n# Convert DataFrame to markdown table\\nmarkdown_table = forecast_df.to_markdown(index=False)\\nmarkdown_table"}',
  'call_id': 'call_VAfl2mzns1fu8Qwuyq5qsS3X',
  'name': 'execute_code',
  'type': 'function_call',
  'id': 'fc_67edcd31b0b08191b7560341e4391ec00e2583e709c47d03',
  'status': 'completed'},
 {'call_id': 'call_VAfl2mzns1fu8Qwuyq5qsS3X',
  'output': '{\'stdout\': "---------------------------------------------------------------------------\\nModuleNotFoundError                       Traceback (most recent call last)\\nFile :1\\n----> 1 import requests\\n      2 import pandas as pd\\n      3 from statsmodels.tsa.arima.model import ARIMA\\n\\nModuleNotFoundError: No module named \'requests\'\\n", \'stderr\': \'\', \'success\': False, \'result\': None, \'error\': "No module named \'requests\'"}',
  'type': 'function_call_output'},
 {'arguments': '{"code":"!pip install requests pandas statsmodels"}',
  'call_id': 'call_HvXhf4h3CrjJ6GSrvuWhVvjf',
  'name': 'execute_code',
  'type': 'function_call',
  'id': 'fc_67edcd45600481919d6193d8c7b83e2f0e2583e709c47d03',
  'status': 'completed'},
 {'call_id': 'call_HvXhf4h3CrjJ6GSrvuWhVvjf',
  'output': "{'stdout': 'Collecting requests\\r\\n  Downloading requests-2.32.3-py3-none-any.whl.metadata (4.6 kB)\\r\\nRequirement already satisfied: pandas in /usr/local/lib/python3.11/site-packages (2.2.3)\\r\\nCollecting statsmodels\\r\\n  Downloading statsmodels-0.14.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (9.2 kB)\\r\\nRequirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/site-packages (from requests) (2.1.1)\\r\\nRequirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/site-packages (from requests) (3.6)\\r\\nCollecting urllib3<3,>=1.21.1 (from requests)\\r\\n  Downloading urllib3-2.3.0-py3-none-any.whl.metadata (6.5 kB)\\r\\nRequirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/site-packages (from requests) (2024.2.2)\\r\\nRequirement already satisfied: numpy>=1.23.2 in /usr/local/lib/python3.11/site-packages (from pandas) (1.26.4)\\r\\nRequirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/site-packages (from pandas) (2.9.0.post0)\\r\\nRequirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/site-packages (from pandas) (2024.2)\\r\\nRequirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/site-packages (from pandas) (2024.2)\\r\\nCollecting scipy!=1.9.2,>=1.8 (from statsmodels)\\r\\n  Downloading scipy-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB)\\r\\n     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/62.0 kB ? eta -:--:--\\r     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.0/62.0 kB 172.6 MB/s eta 0:00:00\\r\\nCollecting patsy>=0.5.6 (from statsmodels)\\r\\n  Downloading patsy-1.0.1-py2.py3-none-any.whl.metadata (3.3 kB)\\r\\nCollecting packaging>=21.3 (from statsmodels)\\r\\n  Downloading packaging-24.2-py3-none-any.whl.metadata (3.2 kB)\\r\\nRequirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)\\r\\nDownloading requests-2.32.3-py3-none-any.whl (64 kB)\\r\\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/64.9 kB ? eta -:--:--\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 64.9/64.9 kB 206.2 MB/s eta 0:00:00\\r\\nDownloading statsmodels-0.14.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB)\\r\\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/10.8 MB ? eta -:--:--\\r   ━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━ 6.6/10.8 MB 196.5 MB/s eta 0:00:01\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.8/10.8 MB 201.4 MB/s eta 0:00:00\\r\\nDownloading packaging-24.2-py3-none-any.whl (65 kB)\\r\\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/65.5 kB ? eta -:--:--\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 65.5/65.5 kB 211.7 MB/s eta 0:00:00\\r\\nDownloading patsy-1.0.1-py2.py3-none-any.whl (232 kB)\\r\\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/232.9 kB ? eta -:--:--\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 232.9/232.9 kB 220.5 MB/s eta 0:00:00\\r\\nDownloading scipy-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.6 MB)\\r\\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/37.6 MB ? eta -:--:--\\r   ━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.2/37.6 MB 157.6 MB/s eta 0:00:01\\r   ━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━ 11.4/37.6 MB 178.8 MB/s eta 0:00:01\\r   ━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━━━━━━━ 17.4/37.6 MB 176.5 MB/s eta 0:00:01\\r   ━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━ 23.3/37.6 MB 172.6 MB/s eta 0:00:01\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━ 29.3/37.6 MB 173.3 MB/s eta 0:00:01\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━ 35.4/37.6 MB 175.3 MB/s eta 0:00:01\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 37.6/37.6 MB 179.8 MB/s eta 0:00:00\\r\\nDownloading urllib3-2.3.0-py3-none-any.whl (128 kB)\\r\\n   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/128.4 kB ? eta -:--:--\\r   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 128.4/128.4 kB 210.0 MB/s eta 0:00:00\\r\\nInstalling collected packages: urllib3, scipy, patsy, packaging, requests, statsmodels\\r\\nSuccessfully installed packaging-24.2 patsy-1.0.1 requests-2.32.3 scipy-1.15.2 statsmodels-0.14.4 urllib3-2.3.0\\r\\n\\r\\n[notice] A new release of pip is available: 24.0 -> 25.0.1\\r\\n[notice] To update, run: pip install --upgrade pip\\r\\n', 'stderr': '', 'success': True, 'result': 'None', 'error': None}",
  'type': 'function_call_output'},
 {'arguments': '{"code":"import requests\\nimport pandas as pd\\nfrom statsmodels.tsa.arima.model import ARIMA\\n\\n# Step 1: Retrieve Historical Weather Data\\nlatitude = 44.6488\\nlongitude = -63.5752\\nstart_date = \\"2025-02-01\\"\\nend_date = \\"2025-04-02\\"\\ntimezone = \\"America/Halifax\\"\\n\\nurl = f\\"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}\\"\\n\\nresponse = requests.get(url)\\ndata = response.json()\\n\\n# Extract dates and temperatures\\ndates = data[\'daily\'][\'time\']\\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\\n\\n# Calculate mean temperatures\\ntemp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\\n\\n# Create a DataFrame\\ndf = pd.DataFrame({\'Date\': pd.to_datetime(dates), \'Mean_Temperature\': temp_mean})\\n\\n# Step 2: Fit a Statistical Model\\n# Set the date as the index\\ndf.set_index(\'Date\', inplace=True)\\n\\n# Fit an ARIMA model\\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))  # ARIMA(p, d, q)\\nmodel_fit = model.fit()\\n\\n# Step 3: Generate Predictions\\nforecast = model_fit.forecast(steps=7)\\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\\n\\n# Step 4: Display Predictions in a Markdown Table\\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\\nforecast_df.reset_index(drop=True, inplace=True)\\n\\n# Convert DataFrame to markdown table\\nmarkdown_table = forecast_df.to_markdown(index=False)\\nmarkdown_table"}',
  'call_id': 'call_Beq2SEw3yusSsGCbZdJJ7KDe',
  'name': 'execute_code',
  'type': 'function_call',
  'id': 'fc_67edcd4f10808191b0ce69a2c6c8aee10e2583e709c47d03',
  'status': 'completed'},
 {'call_id': 'call_Beq2SEw3yusSsGCbZdJJ7KDe',
  'output': '{\'stdout\': "---------------------------------------------------------------------------\\nTypeError                                 Traceback (most recent call last)\\nFile :23\\n     20 temp_min = data[\'daily\'][\'temperature_2m_min\']\\n     22 # Calculate mean temperatures\\n---> 23 temp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\\n     25 # Create a DataFrame\\n     26 df = pd.DataFrame({\'Date\': pd.to_datetime(dates), \'Mean_Temperature\': temp_mean})\\n\\nFile :23, in (.0)\\n     20 temp_min = data[\'daily\'][\'temperature_2m_min\']\\n     22 # Calculate mean temperatures\\n---> 23 temp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]\\n     25 # Create a DataFrame\\n     26 df = pd.DataFrame({\'Date\': pd.to_datetime(dates), \'Mean_Temperature\': temp_mean})\\n\\nTypeError: unsupported operand type(s) for +: \'NoneType\' and \'NoneType\'\\n", \'stderr\': \'\', \'success\': False, \'result\': None, \'error\': "unsupported operand type(s) for +: \'NoneType\' and \'NoneType\'"}',
  'type': 'function_call_output'},
 {'id': 'msg_67edcd54c7548191a2dda9de5b3a36960e2583e709c47d03',
  'content': [{'annotations': [],
    'text': "The error indicates that some of the temperature values are `None`. This can happen if the API returns missing data for certain days. To address this, we should filter out any `None` values before calculating the mean temperatures.\n\nLet's update the code to handle this situation and re-run the analysis.",
    'type': 'output_text'}],
  'role': 'assistant',
  'status': 'completed',
  'type': 'message'},
 {'arguments': '{"code":"import requests\\nimport pandas as pd\\nfrom statsmodels.tsa.arima.model import ARIMA\\n\\n# Step 1: Retrieve Historical Weather Data\\nlatitude = 44.6488\\nlongitude = -63.5752\\nstart_date = \\"2025-02-01\\"\\nend_date = \\"2025-04-02\\"\\ntimezone = \\"America/Halifax\\"\\n\\nurl = f\\"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}\\"\\n\\nresponse = requests.get(url)\\ndata = response.json()\\n\\n# Extract dates and temperatures\\ndates = data[\'daily\'][\'time\']\\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\\n\\n# Calculate mean temperatures, excluding None values\\ntemp_mean = []\\nfor max_temp, min_temp in zip(temp_max, temp_min):\\n    if max_temp is not None and min_temp is not None:\\n        temp_mean.append((max_temp + min_temp) / 2)\\n    else:\\n        temp_mean.append(None)\\n\\n# Remove None values\\nvalid_temp_mean = [temp for temp in temp_mean if temp is not None]\\nvalid_dates = [date for temp, date in zip(temp_mean, dates) if temp is not None]\\n\\n# Create a DataFrame\\ndf = pd.DataFrame({\'Date\': pd.to_datetime(valid_dates), \'Mean_Temperature\': valid_temp_mean})\\n\\n# Step 2: Fit a Statistical Model\\n# Set the date as the index\\ndf.set_index(\'Date\', inplace=True)\\n\\n# Fit an ARIMA model\\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))\\nmodel_fit = model.fit()\\n\\n# Step 3: Generate Predictions\\nforecast = model_fit.forecast(steps=7)\\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\\n\\n# Step 4: Display Predictions in a Markdown Table\\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\\nforecast_df.reset_index(drop=True, inplace=True)\\n\\n# Convert DataFrame to markdown table\\nmarkdown_table = forecast_df.to_markdown(index=False)\\nmarkdown_table"}',
  'call_id': 'call_QrNg66gRdebVc3jSr6eK4hPw',
  'name': 'execute_code',
  'type': 'function_call',
  'id': 'fc_67edcd5691a48191920729697883e5110e2583e709c47d03',
  'status': 'completed'},
 {'call_id': 'call_QrNg66gRdebVc3jSr6eK4hPw',
  'output': '{\'stdout\': \'---------------------------------------------------------------------------\\nModuleNotFoundError                       Traceback (most recent call last)\\nFile /usr/local/lib/python3.11/site-packages/pandas/compat/_optional.py:135, in import_optional_dependency(name, extra, errors, min_version)\\n    134 try:\\n--> 135     module = importlib.import_module(name)\\n    136 except ImportError:\\n\\nFile /usr/local/lib/python3.11/importlib/__init__.py:126, in import_module(name, package)\\n    125         level += 1\\n--> 126 return _bootstrap._gcd_import(name[level:], package, level)\\n\\nFile :1206, in _gcd_import(name, package, level)\\n\\nFile :1178, in _find_and_load(name, import_)\\n\\nFile :1142, in _find_and_load_unlocked(name, import_)\\n\\nModuleNotFoundError: No module named \\\'tabulate\\\'\\n\\nDuring handling of the above exception, another exception occurred:\\n\\nImportError                               Traceback (most recent call last)\\nFile :54\\n     51 forecast_df.reset_index(drop=True, inplace=True)\\n     53 # Convert DataFrame to markdown table\\n---> 54 markdown_table = forecast_df.to_markdown(index=False)\\n     55 markdown_table\\n\\nFile /usr/local/lib/python3.11/site-packages/pandas/util/_decorators.py:333, in deprecate_nonkeyword_arguments..decorate..wrapper(*args, **kwargs)\\n    327 if len(args) > num_allow_args:\\n    328     warnings.warn(\\n    329         msg.format(arguments=_format_argument_list(allow_args)),\\n    330         FutureWarning,\\n    331         stacklevel=find_stack_level(),\\n    332     )\\n--> 333 return func(*args, **kwargs)\\n\\nFile /usr/local/lib/python3.11/site-packages/pandas/core/frame.py:2983, in DataFrame.to_markdown(self, buf, mode, index, storage_options, **kwargs)\\n   2981 kwargs.setdefault("tablefmt", "pipe")\\n   2982 kwargs.setdefault("showindex", index)\\n-> 2983 tabulate = import_optional_dependency("tabulate")\\n   2984 result = tabulate.tabulate(self, **kwargs)\\n   2985 if buf is None:\\n\\nFile /usr/local/lib/python3.11/site-packages/pandas/compat/_optional.py:138, in import_optional_dependency(name, extra, errors, min_version)\\n    136 except ImportError:\\n    137     if errors == "raise":\\n--> 138         raise ImportError(msg)\\n    139     return None\\n    141 # Handle submodules: if we have submodule, grab parent module from sys.modules\\n\\nImportError: Missing optional dependency \\\'tabulate\\\'.  Use pip or conda to install tabulate.\\n\', \'stderr\': \'/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\\n  self._init_dates(dates, freq)\\n/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\\n  self._init_dates(dates, freq)\\n/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\\n  self._init_dates(dates, freq)\\n\', \'success\': False, \'result\': None, \'error\': "Missing optional dependency \'tabulate\'.  Use pip or conda to install tabulate."}',
  'type': 'function_call_output'},
 {'arguments': '{"code":"!pip install tabulate"}',
  'call_id': 'call_2saMOvIPSQs9ATZ72S5vNOWN',
  'name': 'execute_code',
  'type': 'function_call',
  'id': 'fc_67edcd5d4ad08191a151d5e634e22e900e2583e709c47d03',
  'status': 'completed'},
 {'call_id': 'call_2saMOvIPSQs9ATZ72S5vNOWN',
  'output': "{'stdout': 'Collecting tabulate\\r\\n  Downloading tabulate-0.9.0-py3-none-any.whl.metadata (34 kB)\\r\\nDownloading tabulate-0.9.0-py3-none-any.whl (35 kB)\\r\\nInstalling collected packages: tabulate\\r\\nSuccessfully installed tabulate-0.9.0\\r\\n\\r\\n[notice] A new release of pip is available: 24.0 -> 25.0.1\\r\\n[notice] To update, run: pip install --upgrade pip\\r\\n', 'stderr': '', 'success': True, 'result': 'None', 'error': None}",
  'type': 'function_call_output'},
 {'arguments': '{"code":"import requests\\nimport pandas as pd\\nfrom statsmodels.tsa.arima.model import ARIMA\\n\\n# Step 1: Retrieve Historical Weather Data\\nlatitude = 44.6488\\nlongitude = -63.5752\\nstart_date = \\"2025-02-01\\"\\nend_date = \\"2025-04-02\\"\\ntimezone = \\"America/Halifax\\"\\n\\nurl = f\\"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}\\"\\n\\nresponse = requests.get(url)\\ndata = response.json()\\n\\n# Extract dates and temperatures\\ndates = data[\'daily\'][\'time\']\\ntemp_max = data[\'daily\'][\'temperature_2m_max\']\\ntemp_min = data[\'daily\'][\'temperature_2m_min\']\\n\\n# Calculate mean temperatures, excluding None values\\ntemp_mean = []\\nfor max_temp, min_temp in zip(temp_max, temp_min):\\n    if max_temp is not None and min_temp is not None:\\n        temp_mean.append((max_temp + min_temp) / 2)\\n    else:\\n        temp_mean.append(None)\\n\\n# Remove None values\\nvalid_temp_mean = [temp for temp in temp_mean if temp is not None]\\nvalid_dates = [date for temp, date in zip(temp_mean, dates) if temp is not None]\\n\\n# Create a DataFrame\\ndf = pd.DataFrame({\'Date\': pd.to_datetime(valid_dates), \'Mean_Temperature\': valid_temp_mean})\\n\\n# Step 2: Fit a Statistical Model\\n# Set the date as the index\\ndf.set_index(\'Date\', inplace=True)\\n\\n# Fit an ARIMA model\\nmodel = ARIMA(df[\'Mean_Temperature\'], order=(5, 1, 0))\\nmodel_fit = model.fit()\\n\\n# Step 3: Generate Predictions\\nforecast = model_fit.forecast(steps=7)\\nforecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)\\n\\n# Step 4: Display Predictions in a Markdown Table\\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Predicted_Mean_Temperature\': forecast})\\nforecast_df.reset_index(drop=True, inplace=True)\\n\\n# Convert DataFrame to markdown table\\nmarkdown_table = forecast_df.to_markdown(index=False)\\nmarkdown_table"}',
  'call_id': 'call_jLN6sUobJsXryX5lvfZ6uisV',
  'name': 'execute_code',
  'type': 'function_call',
  'id': 'fc_67edcd5fd89481919fdac5c5368681160e2583e709c47d03',
  'status': 'completed'},
 {'call_id': 'call_jLN6sUobJsXryX5lvfZ6uisV',
  'output': '{\'stdout\': "Out[1]: \'| Date                |   Predicted_Mean_Temperature |\\\\n|:--------------------|-----------------------------:|\\\\n| 2025-04-01 00:00:00 |                      3.30113 |\\\\n| 2025-04-02 00:00:00 |                      2.24348 |\\\\n| 2025-04-03 00:00:00 |                      2.5076  |\\\\n| 2025-04-04 00:00:00 |                      2.32606 |\\\\n| 2025-04-05 00:00:00 |                      2.01458 |\\\\n| 2025-04-06 00:00:00 |                      2.52581 |\\\\n| 2025-04-07 00:00:00 |                      2.66123 |\'\\n", \'stderr\': \'/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\\n  self._init_dates(dates, freq)\\n/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\\n  self._init_dates(dates, freq)\\n/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.\\n  self._init_dates(dates, freq)\\n\', \'success\': True, \'result\': "\'| Date                |   Predicted_Mean_Temperature |\\\\n|:--------------------|-----------------------------:|\\\\n| 2025-04-01 00:00:00 |                      3.30113 |\\\\n| 2025-04-02 00:00:00 |                      2.24348 |\\\\n| 2025-04-03 00:00:00 |                      2.5076  |\\\\n| 2025-04-04 00:00:00 |                      2.32606 |\\\\n| 2025-04-05 00:00:00 |                      2.01458 |\\\\n| 2025-04-06 00:00:00 |                      2.52581 |\\\\n| 2025-04-07 00:00:00 |                      2.66123 |\'", \'error\': None}',
  'type': 'function_call_output'},
 {'id': 'msg_67edcd652b6c8191a4f014b972412d150e2583e709c47d03',
  'content': [{'annotations': [],
    'text': "Here's the markdown table with the predicted mean temperatures for Halifax, Nova Scotia, from April 1 to April 7, 2025:\n\n```markdown\n| Date                |   Predicted_Mean_Temperature |\n|:--------------------|-----------------------------:|\n| 2025-04-01 00:00:00 |                      3.30113 |\n| 2025-04-02 00:00:00 |                      2.24348 |\n| 2025-04-03 00:00:00 |                      2.5076  |\n| 2025-04-04 00:00:00 |                      2.32606 |\n| 2025-04-05 00:00:00 |                      2.01458 |\n| 2025-04-06 00:00:00 |                      2.52581 |\n| 2025-04-07 00:00:00 |                      2.66123 |\n```\n\nThese predictions were generated using an ARIMA model based on the historical temperature data.",
    'type': 'output_text'}],
  'role': 'assistant',
  'status': 'completed',
  'type': 'message'}]

We could hack together a function to display the conversation like this:

def show_conversation(conversation):
    from ast import literal_eval

    for message in conversation:
        if message.get("role") == "user":
            show(render_md("### User:"))
            show(render_md(message.get("content", "")))

        elif message.get("role") == "assistant":
            show(render_md("### Assistant:"))
            # Handle the new content format which is a list of dictionaries
            if isinstance(message.get("content"), list):
                for content_item in message["content"]:
                    if content_item.get("type") == "output_text":
                        show(render_md(content_item.get("text", "")))

        # Handle tool calls (like execute_code)
        elif message.get("type") == "function_call":
            show(render_md(f"### Tool Call: {message.get('name')}"))
            if "arguments" in message:
                arguments = json.loads(message["arguments"])
                for k, v in arguments.items():
                    show(render_md(f"#### Argument: {k}"))
                    show(render_md(f"```python\n{v}\n```"))

        # Handle tool outputs
        elif message.get("type") == "function_call_output":
            output = message.get("output", {})
            output = literal_eval(output)
            for k, v in output.items():
                if not v:
                    continue
                show(render_md(f"#### Output: {k}"))
                show(render_md(f"```python\n{v}\n```"))
        elif message.get("type") == "web_search_call":
            show(render_md("### Performing Web Search:"))
        else:
            raise Exception(f"Unknown message type: {message.get('type')}")


# Use it like this:
show_conversation(result.to_input_list())

User:

                      Use an open source weather API to get the temperature in Halifax, Nova Scotia for the last 60 days. 
                      Then fit a statistical model to predict the temperature for the next week. 
                      Print the final predictions in a table (markdown format).
                      Todays date is 2025-04-02.

Performing Web Search:

Assistant:

To obtain the temperature data for Halifax, Nova Scotia over the past 60 days and predict the temperatures for the next week, we can utilize the Open-Meteo API, which provides free access to historical weather data for non-commercial use. (open-meteo-website.pages.dev)

Step 1: Retrieve Historical Weather Data

We'll use the Open-Meteo Historical Weather API to fetch daily mean temperatures for Halifax from February 1, 2025, to April 2, 2025. The API requires latitude and longitude coordinates for the location. For Halifax, Nova Scotia, the approximate coordinates are:

  • Latitude: 44.6488
  • Longitude: -63.5752

The API endpoint for historical weather data is:

https://archive-api.open-meteo.com/v1/archive

We'll make a GET request to this endpoint with the following parameters:

  • latitude: 44.6488
  • longitude: -63.5752
  • start_date: 2025-02-01
  • end_date: 2025-04-02
  • daily: temperature_2m_max,temperature_2m_min
  • timezone: America/Halifax

Step 2: Fit a Statistical Model

After retrieving the historical temperature data, we'll fit a time series model to predict the daily mean temperatures for the next seven days (April 3 to April 9, 2025). A common approach is to use an Autoregressive Integrated Moving Average (ARIMA) model, which is suitable for time series forecasting.

Step 3: Generate Predictions

Using the fitted ARIMA model, we'll forecast the daily mean temperatures for the specified dates.

Step 4: Display Predictions in a Markdown Table

Finally, we'll present the predicted temperatures in a markdown-formatted table for clarity.

Let's proceed with the implementation:

import requests
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA
import matplotlib.pyplot as plt

# Step 1: Retrieve Historical Weather Data
latitude = 44.6488
longitude = -63.5752
start_date = "2025-02-01"
end_date = "2025-04-02"
timezone = "America/Halifax"

url = f"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}"

response = requests.get(url)
data = response.json()

# Extract dates and temperatures
dates = data['daily']['time']
temp_max = data['daily']['temperature_2m_max']
temp_min = data['daily']['temperature_2m_min']

# Calculate mean temperatures
temp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]

# Create a DataFrame
df = pd.DataFrame({'Date': pd.to_datetime(dates), 'Mean_Temperature': temp_mean})

# Step 2: Fit a Statistical Model
# Set the date as the index
df.set_index('Date', inplace=True)

# Fit an ARIMA model
model = ARIMA(df['Mean_Temperature'], order=(5, 1, 0))  # ARIMA(p, d, q)
model_fit = model.fit()

# Step 3: Generate Predictions
forecast = model_fit.forecast(steps=7)
forecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)

# Step 4: Display Predictions in a Markdown Table
forecast_df = pd.DataFrame({'Date': forecast_dates, 'Predicted_Mean_Temperature': forecast})
forecast_df.reset_index(drop=True, inplace=True)

# Convert DataFrame to markdown table
markdown_table = forecast_df.to_markdown(index=False)

print(markdown_table)

Note: Ensure that the required libraries (requests, pandas, statsmodels, and matplotlib) are installed in your Python environment. You can install them using pip if they are not already installed:

pip install requests pandas statsmodels matplotlib

This script will output a markdown-formatted table with the predicted mean temperatures for Halifax, Nova Scotia, from April 3 to April 9, 2025.

Tool Call: execute_code

Argument: code

import requests
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA

# Step 1: Retrieve Historical Weather Data
latitude = 44.6488
longitude = -63.5752
start_date = "2025-02-01"
end_date = "2025-04-02"
timezone = "America/Halifax"

url = f"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}"

response = requests.get(url)
data = response.json()

# Extract dates and temperatures
dates = data['daily']['time']
temp_max = data['daily']['temperature_2m_max']
temp_min = data['daily']['temperature_2m_min']

# Calculate mean temperatures
temp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]

# Create a DataFrame
df = pd.DataFrame({'Date': pd.to_datetime(dates), 'Mean_Temperature': temp_mean})

# Step 2: Fit a Statistical Model
# Set the date as the index
df.set_index('Date', inplace=True)

# Fit an ARIMA model
model = ARIMA(df['Mean_Temperature'], order=(5, 1, 0))  # ARIMA(p, d, q)
model_fit = model.fit()

# Step 3: Generate Predictions
forecast = model_fit.forecast(steps=7)
forecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)

# Step 4: Display Predictions in a Markdown Table
forecast_df = pd.DataFrame({'Date': forecast_dates, 'Predicted_Mean_Temperature': forecast})
forecast_df.reset_index(drop=True, inplace=True)

# Convert DataFrame to markdown table
markdown_table = forecast_df.to_markdown(index=False)
markdown_table

Output: stdout

---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
File <ipython-input-1-2bd758573db1>:1
----> 1 import requests
      2 import pandas as pd
      3 from statsmodels.tsa.arima.model import ARIMA

ModuleNotFoundError: No module named 'requests'

Output: error

No module named 'requests'

Tool Call: execute_code

Argument: code

!pip install requests pandas statsmodels

Output: stdout

Collecting requests
  Downloading requests-2.32.3-py3-none-any.whl.metadata (4.6 kB)
Requirement already satisfied: pandas in /usr/local/lib/python3.11/site-packages (2.2.3)
Collecting statsmodels
  Downloading statsmodels-0.14.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (9.2 kB)
Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/site-packages (from requests) (2.1.1)
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/site-packages (from requests) (3.6)
Collecting urllib3<3,>=1.21.1 (from requests)
  Downloading urllib3-2.3.0-py3-none-any.whl.metadata (6.5 kB)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/site-packages (from requests) (2024.2.2)
Requirement already satisfied: numpy>=1.23.2 in /usr/local/lib/python3.11/site-packages (from pandas) (1.26.4)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/site-packages (from pandas) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/site-packages (from pandas) (2024.2)
Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/site-packages (from pandas) (2024.2)
Collecting scipy!=1.9.2,>=1.8 (from statsmodels)
  Downloading scipy-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/62.0 kB ? eta -:--:--
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.0/62.0 kB 172.6 MB/s eta 0:00:00
Collecting patsy>=0.5.6 (from statsmodels)
  Downloading patsy-1.0.1-py2.py3-none-any.whl.metadata (3.3 kB)
Collecting packaging>=21.3 (from statsmodels)
  Downloading packaging-24.2-py3-none-any.whl.metadata (3.2 kB)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
Downloading requests-2.32.3-py3-none-any.whl (64 kB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/64.9 kB ? eta -:--:--
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 64.9/64.9 kB 206.2 MB/s eta 0:00:00
Downloading statsmodels-0.14.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/10.8 MB ? eta -:--:--
   ━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━ 6.6/10.8 MB 196.5 MB/s eta 0:00:01
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.8/10.8 MB 201.4 MB/s eta 0:00:00
Downloading packaging-24.2-py3-none-any.whl (65 kB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/65.5 kB ? eta -:--:--
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 65.5/65.5 kB 211.7 MB/s eta 0:00:00
Downloading patsy-1.0.1-py2.py3-none-any.whl (232 kB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/232.9 kB ? eta -:--:--
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 232.9/232.9 kB 220.5 MB/s eta 0:00:00
Downloading scipy-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.6 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/37.6 MB ? eta -:--:--
   ━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.2/37.6 MB 157.6 MB/s eta 0:00:01
   ━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━ 11.4/37.6 MB 178.8 MB/s eta 0:00:01
   ━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━━━━━━━ 17.4/37.6 MB 176.5 MB/s eta 0:00:01
   ━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━ 23.3/37.6 MB 172.6 MB/s eta 0:00:01
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━ 29.3/37.6 MB 173.3 MB/s eta 0:00:01
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━ 35.4/37.6 MB 175.3 MB/s eta 0:00:01
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 37.6/37.6 MB 179.8 MB/s eta 0:00:00
Downloading urllib3-2.3.0-py3-none-any.whl (128 kB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/128.4 kB ? eta -:--:--
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 128.4/128.4 kB 210.0 MB/s eta 0:00:00
Installing collected packages: urllib3, scipy, patsy, packaging, requests, statsmodels
Successfully installed packaging-24.2 patsy-1.0.1 requests-2.32.3 scipy-1.15.2 statsmodels-0.14.4 urllib3-2.3.0

[notice] A new release of pip is available: 24.0 -> 25.0.1
[notice] To update, run: pip install --upgrade pip

Output: success

True

Output: result

None

Tool Call: execute_code

Argument: code

import requests
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA

# Step 1: Retrieve Historical Weather Data
latitude = 44.6488
longitude = -63.5752
start_date = "2025-02-01"
end_date = "2025-04-02"
timezone = "America/Halifax"

url = f"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}"

response = requests.get(url)
data = response.json()

# Extract dates and temperatures
dates = data['daily']['time']
temp_max = data['daily']['temperature_2m_max']
temp_min = data['daily']['temperature_2m_min']

# Calculate mean temperatures
temp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]

# Create a DataFrame
df = pd.DataFrame({'Date': pd.to_datetime(dates), 'Mean_Temperature': temp_mean})

# Step 2: Fit a Statistical Model
# Set the date as the index
df.set_index('Date', inplace=True)

# Fit an ARIMA model
model = ARIMA(df['Mean_Temperature'], order=(5, 1, 0))  # ARIMA(p, d, q)
model_fit = model.fit()

# Step 3: Generate Predictions
forecast = model_fit.forecast(steps=7)
forecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)

# Step 4: Display Predictions in a Markdown Table
forecast_df = pd.DataFrame({'Date': forecast_dates, 'Predicted_Mean_Temperature': forecast})
forecast_df.reset_index(drop=True, inplace=True)

# Convert DataFrame to markdown table
markdown_table = forecast_df.to_markdown(index=False)
markdown_table

Output: stdout

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
File <ipython-input-1-2bd758573db1>:23
     20 temp_min = data['daily']['temperature_2m_min']
     22 # Calculate mean temperatures
---> 23 temp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]
     25 # Create a DataFrame
     26 df = pd.DataFrame({'Date': pd.to_datetime(dates), 'Mean_Temperature': temp_mean})

File <ipython-input-1-2bd758573db1>:23, in <listcomp>(.0)
     20 temp_min = data['daily']['temperature_2m_min']
     22 # Calculate mean temperatures
---> 23 temp_mean = [(max_temp + min_temp) / 2 for max_temp, min_temp in zip(temp_max, temp_min)]
     25 # Create a DataFrame
     26 df = pd.DataFrame({'Date': pd.to_datetime(dates), 'Mean_Temperature': temp_mean})

TypeError: unsupported operand type(s) for +: 'NoneType' and 'NoneType'

Output: error

unsupported operand type(s) for +: 'NoneType' and 'NoneType'

Assistant:

The error indicates that some of the temperature values are None. This can happen if the API returns missing data for certain days. To address this, we should filter out any None values before calculating the mean temperatures.

Let's update the code to handle this situation and re-run the analysis.

Tool Call: execute_code

Argument: code

import requests
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA

# Step 1: Retrieve Historical Weather Data
latitude = 44.6488
longitude = -63.5752
start_date = "2025-02-01"
end_date = "2025-04-02"
timezone = "America/Halifax"

url = f"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}"

response = requests.get(url)
data = response.json()

# Extract dates and temperatures
dates = data['daily']['time']
temp_max = data['daily']['temperature_2m_max']
temp_min = data['daily']['temperature_2m_min']

# Calculate mean temperatures, excluding None values
temp_mean = []
for max_temp, min_temp in zip(temp_max, temp_min):
    if max_temp is not None and min_temp is not None:
        temp_mean.append((max_temp + min_temp) / 2)
    else:
        temp_mean.append(None)

# Remove None values
valid_temp_mean = [temp for temp in temp_mean if temp is not None]
valid_dates = [date for temp, date in zip(temp_mean, dates) if temp is not None]

# Create a DataFrame
df = pd.DataFrame({'Date': pd.to_datetime(valid_dates), 'Mean_Temperature': valid_temp_mean})

# Step 2: Fit a Statistical Model
# Set the date as the index
df.set_index('Date', inplace=True)

# Fit an ARIMA model
model = ARIMA(df['Mean_Temperature'], order=(5, 1, 0))
model_fit = model.fit()

# Step 3: Generate Predictions
forecast = model_fit.forecast(steps=7)
forecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)

# Step 4: Display Predictions in a Markdown Table
forecast_df = pd.DataFrame({'Date': forecast_dates, 'Predicted_Mean_Temperature': forecast})
forecast_df.reset_index(drop=True, inplace=True)

# Convert DataFrame to markdown table
markdown_table = forecast_df.to_markdown(index=False)
markdown_table

Output: stdout

---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
File /usr/local/lib/python3.11/site-packages/pandas/compat/_optional.py:135, in import_optional_dependency(name, extra, errors, min_version)
    134 try:
--> 135     module = importlib.import_module(name)
    136 except ImportError:

File /usr/local/lib/python3.11/importlib/__init__.py:126, in import_module(name, package)
    125         level += 1
--> 126 return _bootstrap._gcd_import(name[level:], package, level)

File <frozen importlib._bootstrap>:1206, in _gcd_import(name, package, level)

File <frozen importlib._bootstrap>:1178, in _find_and_load(name, import_)

File <frozen importlib._bootstrap>:1142, in _find_and_load_unlocked(name, import_)

ModuleNotFoundError: No module named 'tabulate'

During handling of the above exception, another exception occurred:

ImportError                               Traceback (most recent call last)
File <ipython-input-1-09b5dff255e5>:54
     51 forecast_df.reset_index(drop=True, inplace=True)
     53 # Convert DataFrame to markdown table
---> 54 markdown_table = forecast_df.to_markdown(index=False)
     55 markdown_table

File /usr/local/lib/python3.11/site-packages/pandas/util/_decorators.py:333, in deprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper(*args, **kwargs)
    327 if len(args) > num_allow_args:
    328     warnings.warn(
    329         msg.format(arguments=_format_argument_list(allow_args)),
    330         FutureWarning,
    331         stacklevel=find_stack_level(),
    332     )
--> 333 return func(*args, **kwargs)

File /usr/local/lib/python3.11/site-packages/pandas/core/frame.py:2983, in DataFrame.to_markdown(self, buf, mode, index, storage_options, **kwargs)
   2981 kwargs.setdefault("tablefmt", "pipe")
   2982 kwargs.setdefault("showindex", index)
-> 2983 tabulate = import_optional_dependency("tabulate")
   2984 result = tabulate.tabulate(self, **kwargs)
   2985 if buf is None:

File /usr/local/lib/python3.11/site-packages/pandas/compat/_optional.py:138, in import_optional_dependency(name, extra, errors, min_version)
    136 except ImportError:
    137     if errors == "raise":
--> 138         raise ImportError(msg)
    139     return None
    141 # Handle submodules: if we have submodule, grab parent module from sys.modules

ImportError: Missing optional dependency 'tabulate'.  Use pip or conda to install tabulate.

Output: stderr

/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.
  self._init_dates(dates, freq)
/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.
  self._init_dates(dates, freq)
/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.
  self._init_dates(dates, freq)

Output: error

Missing optional dependency 'tabulate'.  Use pip or conda to install tabulate.

Tool Call: execute_code

Argument: code

!pip install tabulate

Output: stdout

Collecting tabulate
  Downloading tabulate-0.9.0-py3-none-any.whl.metadata (34 kB)
Downloading tabulate-0.9.0-py3-none-any.whl (35 kB)
Installing collected packages: tabulate
Successfully installed tabulate-0.9.0

[notice] A new release of pip is available: 24.0 -> 25.0.1
[notice] To update, run: pip install --upgrade pip

Output: success

True

Output: result

None

Tool Call: execute_code

Argument: code

import requests
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA

# Step 1: Retrieve Historical Weather Data
latitude = 44.6488
longitude = -63.5752
start_date = "2025-02-01"
end_date = "2025-04-02"
timezone = "America/Halifax"

url = f"https://archive-api.open-meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={start_date}&end_date={end_date}&daily=temperature_2m_max,temperature_2m_min&timezone={timezone}"

response = requests.get(url)
data = response.json()

# Extract dates and temperatures
dates = data['daily']['time']
temp_max = data['daily']['temperature_2m_max']
temp_min = data['daily']['temperature_2m_min']

# Calculate mean temperatures, excluding None values
temp_mean = []
for max_temp, min_temp in zip(temp_max, temp_min):
    if max_temp is not None and min_temp is not None:
        temp_mean.append((max_temp + min_temp) / 2)
    else:
        temp_mean.append(None)

# Remove None values
valid_temp_mean = [temp for temp in temp_mean if temp is not None]
valid_dates = [date for temp, date in zip(temp_mean, dates) if temp is not None]

# Create a DataFrame
df = pd.DataFrame({'Date': pd.to_datetime(valid_dates), 'Mean_Temperature': valid_temp_mean})

# Step 2: Fit a Statistical Model
# Set the date as the index
df.set_index('Date', inplace=True)

# Fit an ARIMA model
model = ARIMA(df['Mean_Temperature'], order=(5, 1, 0))
model_fit = model.fit()

# Step 3: Generate Predictions
forecast = model_fit.forecast(steps=7)
forecast_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=7)

# Step 4: Display Predictions in a Markdown Table
forecast_df = pd.DataFrame({'Date': forecast_dates, 'Predicted_Mean_Temperature': forecast})
forecast_df.reset_index(drop=True, inplace=True)

# Convert DataFrame to markdown table
markdown_table = forecast_df.to_markdown(index=False)
markdown_table

Output: stdout

Out[1]: '| Date                |   Predicted_Mean_Temperature |\n|:--------------------|-----------------------------:|\n| 2025-04-01 00:00:00 |                      3.30113 |\n| 2025-04-02 00:00:00 |                      2.24348 |\n| 2025-04-03 00:00:00 |                      2.5076  |\n| 2025-04-04 00:00:00 |                      2.32606 |\n| 2025-04-05 00:00:00 |                      2.01458 |\n| 2025-04-06 00:00:00 |                      2.52581 |\n| 2025-04-07 00:00:00 |                      2.66123 |'

Output: stderr

/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.
  self._init_dates(dates, freq)
/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.
  self._init_dates(dates, freq)
/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.
  self._init_dates(dates, freq)

Output: success

True

Output: result

'| Date                |   Predicted_Mean_Temperature |\n|:--------------------|-----------------------------:|\n| 2025-04-01 00:00:00 |                      3.30113 |\n| 2025-04-02 00:00:00 |                      2.24348 |\n| 2025-04-03 00:00:00 |                      2.5076  |\n| 2025-04-04 00:00:00 |                      2.32606 |\n| 2025-04-05 00:00:00 |                      2.01458 |\n| 2025-04-06 00:00:00 |                      2.52581 |\n| 2025-04-07 00:00:00 |                      2.66123 |'

Assistant:

Here's the markdown table with the predicted mean temperatures for Halifax, Nova Scotia, from April 1 to April 7, 2025:

| Date                |   Predicted_Mean_Temperature |
|:--------------------|-----------------------------:|
| 2025-04-01 00:00:00 |                      3.30113 |
| 2025-04-02 00:00:00 |                      2.24348 |
| 2025-04-03 00:00:00 |                      2.5076  |
| 2025-04-04 00:00:00 |                      2.32606 |
| 2025-04-05 00:00:00 |                      2.01458 |
| 2025-04-06 00:00:00 |                      2.52581 |
| 2025-04-07 00:00:00 |                      2.66123 |

These predictions were generated using an ARIMA model based on the historical temperature data.

This view of everything that was done, as well as traces, can be viewed in the OpenAI traces dashboard

Note: I could have pre-installed those pip packages but it's nice to see the agent fix errors on its own.

Multi-Agent Collaboration

The Agents SDK supports multi-agent collaboration via handoffs.

from agents.extensions.handoff_prompt import RECOMMENDED_PROMPT_PREFIX

print(RECOMMENDED_PROMPT_PREFIX)
# System context
You are part of a multi-agent system called the Agents SDK, designed to make agent coordination and execution easy. Agents uses two primary abstraction: **Agents** and **Handoffs**. An agent encompasses instructions and tools and can hand off a conversation to another agent when appropriate. Handoffs are achieved by calling a handoff function, generally named `transfer_to_<agent_name>`. Transfers between agents are handled seamlessly in the background; do not mention or draw attention to these transfers in your conversation with the user.

review_agent = Agent(
    name="Review Agent",
    instructions=f"{RECOMMENDED_PROMPT_PREFIX} You need to review the code, logic, and answer provided by the coding agent. If the coding agent does not provide a complete answer then explain to the coding agent what it needs to do to fix it.",
    model="gpt-4o",
    handoff_description="Specialist agent for reviewing code",
    handoffs=[coding_agent],
)

coding_agent = Agent(
    name="Code Agent",
    instructions=f"{RECOMMENDED_PROMPT_PREFIX} {coding_instructions}. After completing your task, hand off the results to the review agent for final review.",
    model="gpt-4o",
    tools=[execute_code, WebSearchTool()],
    handoff_description="Specialist agent for coding and executing code",
    handoffs=[review_agent],
)

triage_agent = Agent(
    name="Triage Agent",
    instructions=f"{RECOMMENDED_PROMPT_PREFIX} You determine which agent to use based on the users request. You start by handing off the request and details to the coding agent.",
    model="gpt-4o",
    handoff_description="Specialist agent for triaging tasks",
    handoffs=[coding_agent, review_agent],
)
result = await Runner.run(
    triage_agent,
    "I need a table of dow jones closing prices for the last 30 days. Present the results in markdown format. Also compute the summary statistics of the closing prices using Python code.",
)
print(result.final_output)
Here are the summary statistics for the Dow Jones closing prices over the last 30 days:

- **Mean Closing Price:** 44,585.69
- **Median Closing Price:** 44,556.04
- **Standard Deviation:** 185.31
- **Minimum Closing Price:** 44,303.40
- **Maximum Closing Price:** 44,882.13

If you need any further assistance, feel free to ask!
result.to_input_list()
[{'content': 'I need a table of dow jones closing prices for the last 30 days. Present the results in markdown format. Also compute the summary statistics of the closing prices using Python code.',
  'role': 'user'},
 {'arguments': '{}',
  'call_id': 'call_wRBF3CRHCzUQ30m66M6Y8SXO',
  'name': 'transfer_to_code_agent',
  'type': 'function_call',
  'id': 'fc_67ee75c7f78c81918f256657292ab05a0cc8de9de06d4715',
  'status': 'completed'},
 {'call_id': 'call_wRBF3CRHCzUQ30m66M6Y8SXO',
  'output': "{'assistant': 'Code Agent'}",
  'type': 'function_call_output'},
 {'id': 'ws_67ee75c8eb8c8191a234f8b2298213ae0cc8de9de06d4715',
  'status': 'completed',
  'type': 'web_search_call'},
 {'id': 'msg_67ee75cafaa08191a68f4d723ed6edb30cc8de9de06d4715',
  'content': [{'annotations': [{'end_index': 1262,
      'start_index': 1175,
      'title': 'Dow Jones Industrial Average Historical Data - DJI | ADVFN',
      'type': 'url_citation',
      'url': 'https://www.advfn.com/stock-market/DOWI/DJI/historical?utm_source=openai'}],
    'text': 'Here is a table of the Dow Jones Industrial Average (DJIA) closing prices for the last 30 trading days:\n\n| Date       | Closing Price |\n|------------|---------------|\n| 2025-04-02 | 44,711.43     |\n| 2025-04-01 | 44,368.56     |\n| 2025-03-31 | 44,593.65     |\n| 2025-03-28 | 44,470.41     |\n| 2025-03-27 | 44,303.40     |\n| 2025-03-26 | 44,747.63     |\n| 2025-03-25 | 44,873.28     |\n| 2025-03-24 | 44,556.04     |\n| 2025-03-21 | 44,421.91     |\n| 2025-03-20 | 44,544.66     |\n| 2025-03-19 | 44,882.13     |\n| 2025-03-18 | 44,711.43     |\n| 2025-03-17 | 44,368.56     |\n| 2025-03-14 | 44,593.65     |\n| 2025-03-13 | 44,470.41     |\n| 2025-03-12 | 44,303.40     |\n| 2025-03-11 | 44,747.63     |\n| 2025-03-10 | 44,873.28     |\n| 2025-03-07 | 44,556.04     |\n| 2025-03-06 | 44,421.91     |\n| 2025-03-05 | 44,544.66     |\n| 2025-03-04 | 44,882.13     |\n| 2025-03-03 | 44,711.43     |\n| 2025-02-28 | 44,368.56     |\n| 2025-02-27 | 44,593.65     |\n| 2025-02-26 | 44,470.41     |\n| 2025-02-25 | 44,303.40     |\n| 2025-02-24 | 44,747.63     |\n| 2025-02-21 | 44,873.28     |\n| 2025-02-20 | 44,556.04     |\n\n*Note: The data above is sourced from ADVFN\'s historical data for the DJIA.* ([advfn.com](https://www.advfn.com/stock-market/DOWI/DJI/historical?utm_source=openai))\n\nTo compute summary statistics of these closing prices, you can use the following Python code:\n\n\n```python\nimport numpy as np\n\nclosing_prices = [\n    44711.43, 44368.56, 44593.65, 44470.41, 44303.40, 44747.63, 44873.28, 44556.04, 44421.91, 44544.66,\n    44882.13, 44711.43, 44368.56, 44593.65, 44470.41, 44303.40, 44747.63, 44873.28, 44556.04, 44421.91,\n    44544.66, 44882.13, 44711.43, 44368.56, 44593.65, 44470.41, 44303.40, 44747.63, 44873.28, 44556.04\n]\n\nmean_price = np.mean(closing_prices)\nmedian_price = np.median(closing_prices)\nstd_dev_price = np.std(closing_prices)\nmin_price = np.min(closing_prices)\nmax_price = np.max(closing_prices)\n\nprint(f"Mean Closing Price: {mean_price:.2f}")\nprint(f"Median Closing Price: {median_price:.2f}")\nprint(f"Standard Deviation: {std_dev_price:.2f}")\nprint(f"Minimum Closing Price: {min_price:.2f}")\nprint(f"Maximum Closing Price: {max_price:.2f}")\n```\n\n\nThis code calculates the mean, median, standard deviation, minimum, and maximum of the closing prices over the last 30 trading days. ',
    'type': 'output_text'}],
  'role': 'assistant',
  'status': 'completed',
  'type': 'message'},
 {'arguments': '{"code":"import numpy as np\\n\\nclosing_prices = [\\n    44711.43, 44368.56, 44593.65, 44470.41, 44303.40, 44747.63, 44873.28, 44556.04, 44421.91, 44544.66,\\n    44882.13, 44711.43, 44368.56, 44593.65, 44470.41, 44303.40, 44747.63, 44873.28, 44556.04, 44421.91,\\n    44544.66, 44882.13, 44711.43, 44368.56, 44593.65, 44470.41, 44303.40, 44747.63, 44873.28, 44556.04\\n]\\n\\nmean_price = np.mean(closing_prices)\\nmedian_price = np.median(closing_prices)\\nstd_dev_price = np.std(closing_prices)\\nmin_price = np.min(closing_prices)\\nmax_price = np.max(closing_prices)\\n\\n(mean_price, median_price, std_dev_price, min_price, max_price)"}',
  'call_id': 'call_0bPGq4QWUTdSEk0SLwjJLWWc',
  'name': 'execute_code',
  'type': 'function_call',
  'id': 'fc_67ee75d14b4c81919242cb3785320f3e0cc8de9de06d4715',
  'status': 'completed'},
 {'call_id': 'call_0bPGq4QWUTdSEk0SLwjJLWWc',
  'output': "{'stdout': 'Out[1]: (44585.686666666654, 44556.04, 185.30987865974248, 44303.4, 44882.13)\\n', 'stderr': '', 'success': True, 'result': '(44585.686666666654, 44556.04, 185.30987865974248, 44303.4, 44882.13)', 'error': None}",
  'type': 'function_call_output'},
 {'id': 'msg_67ee75d4d9a881919b5a6218dc13bb570cc8de9de06d4715',
  'content': [{'annotations': [],
    'text': 'Here are the summary statistics for the Dow Jones closing prices over the last 30 days:\n\n- **Mean Closing Price:** 44,585.69\n- **Median Closing Price:** 44,556.04\n- **Standard Deviation:** 185.31\n- **Minimum Closing Price:** 44,303.40\n- **Maximum Closing Price:** 44,882.13\n\nIf you need any further assistance, feel free to ask!',
    'type': 'output_text'}],
  'role': 'assistant',
  'status': 'completed',
  'type': 'message'}]
show_conversation(result.to_input_list())

User:

I need a table of dow jones closing prices for the last 30 days. Present the results in markdown format. Also compute the summary statistics of the closing prices using Python code.

Tool Call: transfer_to_code_agent

Output: assistant

Code Agent

Performing Web Search:

Assistant:

Here is a table of the Dow Jones Industrial Average (DJIA) closing prices for the last 30 trading days:

Date Closing Price
2025-04-02 44,711.43
2025-04-01 44,368.56
2025-03-31 44,593.65
2025-03-28 44,470.41
2025-03-27 44,303.40
2025-03-26 44,747.63
2025-03-25 44,873.28
2025-03-24 44,556.04
2025-03-21 44,421.91
2025-03-20 44,544.66
2025-03-19 44,882.13
2025-03-18 44,711.43
2025-03-17 44,368.56
2025-03-14 44,593.65
2025-03-13 44,470.41
2025-03-12 44,303.40
2025-03-11 44,747.63
2025-03-10 44,873.28
2025-03-07 44,556.04
2025-03-06 44,421.91
2025-03-05 44,544.66
2025-03-04 44,882.13
2025-03-03 44,711.43
2025-02-28 44,368.56
2025-02-27 44,593.65
2025-02-26 44,470.41
2025-02-25 44,303.40
2025-02-24 44,747.63
2025-02-21 44,873.28
2025-02-20 44,556.04

Note: The data above is sourced from ADVFN's historical data for the DJIA. (advfn.com)

To compute summary statistics of these closing prices, you can use the following Python code:

import numpy as np

closing_prices = [
    44711.43, 44368.56, 44593.65, 44470.41, 44303.40, 44747.63, 44873.28, 44556.04, 44421.91, 44544.66,
    44882.13, 44711.43, 44368.56, 44593.65, 44470.41, 44303.40, 44747.63, 44873.28, 44556.04, 44421.91,
    44544.66, 44882.13, 44711.43, 44368.56, 44593.65, 44470.41, 44303.40, 44747.63, 44873.28, 44556.04
]

mean_price = np.mean(closing_prices)
median_price = np.median(closing_prices)
std_dev_price = np.std(closing_prices)
min_price = np.min(closing_prices)
max_price = np.max(closing_prices)

print(f"Mean Closing Price: {mean_price:.2f}")
print(f"Median Closing Price: {median_price:.2f}")
print(f"Standard Deviation: {std_dev_price:.2f}")
print(f"Minimum Closing Price: {min_price:.2f}")
print(f"Maximum Closing Price: {max_price:.2f}")

This code calculates the mean, median, standard deviation, minimum, and maximum of the closing prices over the last 30 trading days.

Tool Call: execute_code

Argument: code

import numpy as np

closing_prices = [
    44711.43, 44368.56, 44593.65, 44470.41, 44303.40, 44747.63, 44873.28, 44556.04, 44421.91, 44544.66,
    44882.13, 44711.43, 44368.56, 44593.65, 44470.41, 44303.40, 44747.63, 44873.28, 44556.04, 44421.91,
    44544.66, 44882.13, 44711.43, 44368.56, 44593.65, 44470.41, 44303.40, 44747.63, 44873.28, 44556.04
]

mean_price = np.mean(closing_prices)
median_price = np.median(closing_prices)
std_dev_price = np.std(closing_prices)
min_price = np.min(closing_prices)
max_price = np.max(closing_prices)

(mean_price, median_price, std_dev_price, min_price, max_price)

Output: stdout

Out[1]: (44585.686666666654, 44556.04, 185.30987865974248, 44303.4, 44882.13)

Output: success

True

Output: result

(44585.686666666654, 44556.04, 185.30987865974248, 44303.4, 44882.13)

Assistant:

Here are the summary statistics for the Dow Jones closing prices over the last 30 days:

  • Mean Closing Price: 44,585.69
  • Median Closing Price: 44,556.04
  • Standard Deviation: 185.31
  • Minimum Closing Price: 44,303.40
  • Maximum Closing Price: 44,882.13

If you need any further assistance, feel free to ask!

Pre-Defined Workflow

To be honest, I had a lot of issues getting the previous example to work the way I wanted. Maybe it's a skill issue? Maybe it's a prompting issue or an obvious bug in my code? It does not hand off to the review agent at the end.

An agentic workflow is probably overkill here for this task because it could be handled by a pre-defined workflow.

Let's show an example of a pre-defined workflow.

from pydantic import BaseModel


class ReviewResult(BaseModel):
    success: bool
    feedback: str


review_agent = Agent(
    name="Review Agent",
    instructions="""
    Review the work done by the coding agent. 
    Give it feedback on whether or not it was successful.
    Review the code and the output as well as the final answer to make sure it completely answers the user's request.
    If it does not, ask the coding agent to fix it.
    Note: The end user has no ability to view plots so always give feedback that results must be presented in markdown formatted tables instead.
    """,
    model="gpt-4o",
    output_type=ReviewResult,
)

coding_agent = Agent(
    name="Code Agent",
    instructions=coding_instructions,
    model="gpt-4o",
    tools=[execute_code, WebSearchTool()],
)
task = "I need data for dow jones closing prices for the last 30 days as well as a prediction for the next week. Plot the results in a line chart."
res = await Runner.run(coding_agent, task)
for i in range(5):
    res = await Runner.run(review_agent, res.to_input_list(), max_turns=20)
    if res.final_output.success:
        break
    else:
        res = await Runner.run(coding_agent, res.to_input_list(), max_turns=20)
res.to_input_list()
[{'content': 'I need data for dow jones closing prices for the last 30 days as well as a prediction for the next week. Plot the results in a line chart.',
  'role': 'user'},
 {'id': 'msg_67ee7627f89c8191ac7149c0ad293d230697dfdf62cfc520',
  'content': [{'annotations': [],
    'text': "To accomplish this task, I'll follow these steps:\n\n1. **Fetch the last 30 days of Dow Jones closing prices.**\n2. **Predict the closing prices for the next week using a time series forecasting model.**\n3. **Plot the historical and predicted prices in a line chart.**\n\nI'll begin by fetching the historical data.",
    'type': 'output_text'}],
  'role': 'assistant',
  'status': 'completed',
  'type': 'message'},
 {'id': 'ws_67ee762a3fc481918238bec9cfc808fb0697dfdf62cfc520',
  'status': 'completed',
  'type': 'web_search_call'},
 {'id': 'msg_67ee762c40088191beef5a6491e2b07b0697dfdf62cfc520',
  'content': [{'annotations': [],
    'text': "To obtain the Dow Jones Industrial Average (DJIA) closing prices for the last 30 days and predict the next week's closing prices, we'll follow these steps:\n\n1. **Fetch the last 30 days of DJIA closing prices.**\n2. **Predict the closing prices for the next week using a time series forecasting model.**\n3. **Plot the historical and predicted prices in a line chart.**\n\n**Step 1: Fetch the Last 30 Days of DJIA Closing Prices**\n\nWe'll use the `yfinance` library to fetch the historical data. If it's not already installed, you can install it using pip:\n\n```bash\n!pip install yfinance\n```\n\nNow, let's fetch the data:\n\n```python\nimport yfinance as yf\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom datetime import datetime, timedelta\n\n# Define the ticker symbol for DJIA\nticker_symbol = '^DJI'\n\n# Calculate the start and end dates\nend_date = datetime.today()\nstart_date = end_date - timedelta(days=30)\n\n# Fetch the historical data\ndjia_data = yf.download(ticker_symbol, start=start_date, end=end_date)\n\n# Display the first few rows of the data\nprint(djia_data.head())\n```\n\n**Step 2: Predict the Closing Prices for the Next Week**\n\nFor forecasting, we'll use the `statsmodels` library, which provides tools for time series analysis. If it's not installed, install it using pip:\n\n```bash\n!pip install statsmodels\n```\n\nWe'll use the ARIMA (AutoRegressive Integrated Moving Average) model for forecasting:\n\n```python\nfrom statsmodels.tsa.arima.model import ARIMA\n\n# Prepare the data\nclosing_prices = djia_data['Close']\n\n# Fit the ARIMA model\nmodel = ARIMA(closing_prices, order=(5, 1, 0))  # (p, d, q) order\nmodel_fit = model.fit()\n\n# Forecast the next 7 days\nforecast = model_fit.forecast(steps=7)\n\n# Create a date range for the forecast\nforecast_dates = pd.date_range(start=end_date, periods=7)\n\n# Create a DataFrame for the forecast\nforecast_df = pd.DataFrame({'Date': forecast_dates, 'Forecast': forecast})\nforecast_df.set_index('Date', inplace=True)\n\n# Display the forecasted values\nprint(forecast_df)\n```\n\n**Step 3: Plot the Historical and Predicted Prices**\n\nFinally, we'll plot the historical closing prices along with the forecasted prices:\n\n```python\n# Plot the historical and forecasted closing prices\nplt.figure(figsize=(12, 6))\nplt.plot(closing_prices, label='Historical Closing Prices')\nplt.plot(forecast_df, label='Forecasted Closing Prices', linestyle='--')\nplt.xlabel('Date')\nplt.ylabel('DJIA Closing Price')\nplt.title('DJIA Closing Prices: Last 30 Days and Next 7 Days Forecast')\nplt.legend()\nplt.grid(True)\nplt.show()\n```\n\nThis script will fetch the DJIA closing prices for the last 30 days, predict the next week's closing prices using an ARIMA model, and plot both the historical and forecasted prices in a line chart. ",
    'type': 'output_text'}],
  'role': 'assistant',
  'status': 'completed',
  'type': 'message'},
 {'arguments': '{"code":"import yfinance as yf\\nimport pandas as pd\\nimport matplotlib.pyplot as plt\\nfrom datetime import datetime, timedelta\\n\\n# Define the ticker symbol for DJIA\\nticker_symbol = \'^DJI\'\\n\\n# Calculate the start and end dates\\nend_date = datetime.today()\\nstart_date = end_date - timedelta(days=30)\\n\\n# Fetch the historical data\\ndjia_data = yf.download(ticker_symbol, start=start_date, end=end_date)\\n\\ndjia_data.tail()"}',
  'call_id': 'call_G0pKmJEwvgeeNPnOAlbl6AUD',
  'name': 'execute_code',
  'type': 'function_call',
  'id': 'fc_67ee7631381c8191bceb1b7c8511f3cf0697dfdf62cfc520',
  'status': 'completed'},
 {'call_id': 'call_G0pKmJEwvgeeNPnOAlbl6AUD',
  'output': "{'stdout': 'YF.download() has changed argument auto_adjust default to True\\nOut[1]: \\nPrice              Close          High           Low          Open     Volume\\nTicker              ^DJI          ^DJI          ^DJI          ^DJI       ^DJI\\nDate                                                                         \\n2025-03-27  42299.699219  42523.839844  42142.191406  42432.960938  484540000\\n2025-03-28  41583.898438  42258.148438  41530.000000  42245.820312  532360000\\n2025-03-31  42001.761719  42147.378906  41148.128906  41382.519531  732220000\\n2025-04-01  41989.960938  42140.660156  41519.898438  41879.750000  514610000\\n2025-04-02  42225.320312  42382.269531  41629.699219  41736.078125  492050000\\n', 'stderr': '\\r[*********************100%***********************]  1 of 1 completed\\n', 'success': True, 'result': 'Price              Close          High           Low          Open     Volume\\nTicker              ^DJI          ^DJI          ^DJI          ^DJI       ^DJI\\nDate                                                                         \\n2025-03-27  42299.699219  42523.839844  42142.191406  42432.960938  484540000\\n2025-03-28  41583.898438  42258.148438  41530.000000  42245.820312  532360000\\n2025-03-31  42001.761719  42147.378906  41148.128906  41382.519531  732220000\\n2025-04-01  41989.960938  42140.660156  41519.898438  41879.750000  514610000\\n2025-04-02  42225.320312  42382.269531  41629.699219  41736.078125  492050000', 'error': None}",
  'type': 'function_call_output'},
 {'id': 'msg_67ee7633a2008191b82c8bbe688fd78a0697dfdf62cfc520',
  'content': [{'annotations': [],
    'text': "I've successfully fetched the last 30 days of DJIA closing prices. Here's a snippet of the data:\n\n```\nDate          Close\n2025-03-27    42299.70\n2025-03-28    41583.90\n2025-03-31    42001.76\n2025-04-01    41989.96\n2025-04-02    42225.32\n```\n\nNext, I'll use an ARIMA model to predict the closing prices for the next week. Let's proceed with that step.",
    'type': 'output_text'}],
  'role': 'assistant',
  'status': 'completed',
  'type': 'message'},
 {'arguments': '{"code":"from statsmodels.tsa.arima.model import ARIMA\\n\\n# Prepare the data\\nclosing_prices = djia_data[\'Close\']\\n\\n# Fit the ARIMA model\\nmodel = ARIMA(closing_prices, order=(5, 1, 0))  # (p, d, q) order\\nmodel_fit = model.fit()\\n\\n# Forecast the next 7 days\\nforecast = model_fit.forecast(steps=7)\\n\\n# Create a date range for the forecast\\nforecast_dates = pd.date_range(start=end_date, periods=7)\\n\\n# Create a DataFrame for the forecast\\nforecast_df = pd.DataFrame({\'Date\': forecast_dates, \'Forecast\': forecast})\\nforecast_df.set_index(\'Date\', inplace=True)\\n\\n# Display the forecasted values\\nforecast_df"}',
  'call_id': 'call_lz2tiOFnpeaya4f7CwHWEB6u',
  'name': 'execute_code',
  'type': 'function_call',
  'id': 'fc_67ee7635e508819187fc2850073563350697dfdf62cfc520',
  'status': 'completed'},
 {'call_id': 'call_lz2tiOFnpeaya4f7CwHWEB6u',
  'output': "{'stdout': 'Out[1]: \\n                                Forecast\\nDate                                    \\n2025-04-03 11:51:14.612323  42597.528029\\n2025-04-04 11:51:14.612323  42444.947557\\n2025-04-05 11:51:14.612323  42430.015937\\n2025-04-06 11:51:14.612323  42403.907608\\n2025-04-07 11:51:14.612323  42243.069947\\n2025-04-08 11:51:14.612323  42289.149221\\n2025-04-09 11:51:14.612323  42311.536402\\n', 'stderr': '/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency B will be used.\\n  self._init_dates(dates, freq)\\n/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency B will be used.\\n  self._init_dates(dates, freq)\\n/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency B will be used.\\n  self._init_dates(dates, freq)\\n', 'success': True, 'result': '                                Forecast\\nDate                                    \\n2025-04-03 11:51:14.612323  42597.528029\\n2025-04-04 11:51:14.612323  42444.947557\\n2025-04-05 11:51:14.612323  42430.015937\\n2025-04-06 11:51:14.612323  42403.907608\\n2025-04-07 11:51:14.612323  42243.069947\\n2025-04-08 11:51:14.612323  42289.149221\\n2025-04-09 11:51:14.612323  42311.536402', 'error': None}",
  'type': 'function_call_output'},
 {'id': 'msg_67ee763887f881919c1d2dac14816a5c0697dfdf62cfc520',
  'content': [{'annotations': [],
    'text': "The forecasted DJIA closing prices for the next 7 days are as follows:\n\n```\nDate           Forecast\n2025-04-03     42597.53\n2025-04-04     42444.95\n2025-04-05     42430.02\n2025-04-06     42403.91\n2025-04-07     42243.07\n2025-04-08     42289.15\n2025-04-09     42311.54\n```\n\nNow, let's plot both the historical and predicted closing prices in a line chart.",
    'type': 'output_text'}],
  'role': 'assistant',
  'status': 'completed',
  'type': 'message'},
 {'arguments': '{"code":"# Plot the historical and forecasted closing prices\\nplt.figure(figsize=(12, 6))\\nplt.plot(closing_prices, label=\'Historical Closing Prices\')\\nplt.plot(forecast_df, label=\'Forecasted Closing Prices\', linestyle=\'--\')\\nplt.xlabel(\'Date\')\\nplt.ylabel(\'DJIA Closing Price\')\\nplt.title(\'DJIA Closing Prices: Last 30 Days and Next 7 Days Forecast\')\\nplt.legend()\\nplt.grid(True)\\nplt.show()"}',
  'call_id': 'call_6yKfrwIsi5yXoWmDNSXCFvyq',
  'name': 'execute_code',
  'type': 'function_call',
  'id': 'fc_67ee7639f24c8191a2e6c94577d5fc730697dfdf62cfc520',
  'status': 'completed'},
 {'call_id': 'call_6yKfrwIsi5yXoWmDNSXCFvyq',
  'output': "{'stdout': '', 'stderr': '', 'success': True, 'result': 'None', 'error': None}",
  'type': 'function_call_output'},
 {'id': 'msg_67ee763bb21881918aa1415e2f129ae70697dfdf62cfc520',
  'content': [{'annotations': [],
    'text': 'The line chart displaying the historical and predicted DJIA closing prices has been successfully plotted. \n\nYou can see the past 30 days along with the forecasts for the next 7 days, helping you visualize trends and potential movements. If you have any more questions or need further assistance, feel free to ask!',
    'type': 'output_text'}],
  'role': 'assistant',
  'status': 'completed',
  'type': 'message'},
 {'id': 'msg_67ee763dc87c8191a5a902ed0a7bfe800697dfdf62cfc520',
  'content': [{'annotations': [],
    'text': '{"success":false,"feedback":"The results must be presented in markdown formatted tables instead of a plot, as the user cannot view plots. Please provide both the historical and forecasted data in tables."}',
    'type': 'output_text'}],
  'role': 'assistant',
  'status': 'completed',
  'type': 'message'},
 {'id': 'msg_67ee764193708191a4eeddce3d7896aa0697dfdf62cfc520',
  'content': [{'annotations': [],
    'text': "Here's the historical and forecasted data in markdown tables:\n\n### Historical DJIA Closing Prices (Last 5 Days)\n\n| Date       | Closing Price |\n|------------|---------------|\n| 2025-03-27 | 42299.70      |\n| 2025-03-28 | 41583.90      |\n| 2025-03-31 | 42001.76      |\n| 2025-04-01 | 41989.96      |\n| 2025-04-02 | 42225.32      |\n\n### Forecasted DJIA Closing Prices (Next 7 Days)\n\n| Date       | Forecasted Price |\n|------------|------------------|\n| 2025-04-03 | 42597.53         |\n| 2025-04-04 | 42444.95         |\n| 2025-04-05 | 42430.02         |\n| 2025-04-06 | 42403.91         |\n| 2025-04-07 | 42243.07         |\n| 2025-04-08 | 42289.15         |\n| 2025-04-09 | 42311.54         |\n\nIf you need further assistance, feel free to ask!",
    'type': 'output_text'}],
  'role': 'assistant',
  'status': 'completed',
  'type': 'message'},
 {'id': 'msg_67ee7644f0c081918f10815ffa665fe40697dfdf62cfc520',
  'content': [{'annotations': [],
    'text': '{"success":true,"feedback":"The historical and forecasted DJIA closing prices were successfully presented in markdown tables. This fully answers the user\'s request."}',
    'type': 'output_text'}],
  'role': 'assistant',
  'status': 'completed',
  'type': 'message'}]
show_conversation(res.to_input_list())

User:

I need data for dow jones closing prices for the last 30 days as well as a prediction for the next week. Plot the results in a line chart.

Assistant:

To accomplish this task, I'll follow these steps:

  1. Fetch the last 30 days of Dow Jones closing prices.
  2. Predict the closing prices for the next week using a time series forecasting model.
  3. Plot the historical and predicted prices in a line chart.

I'll begin by fetching the historical data.

Performing Web Search:

Assistant:

To obtain the Dow Jones Industrial Average (DJIA) closing prices for the last 30 days and predict the next week's closing prices, we'll follow these steps:

  1. Fetch the last 30 days of DJIA closing prices.
  2. Predict the closing prices for the next week using a time series forecasting model.
  3. Plot the historical and predicted prices in a line chart.

Step 1: Fetch the Last 30 Days of DJIA Closing Prices

We'll use the yfinance library to fetch the historical data. If it's not already installed, you can install it using pip:

!pip install yfinance

Now, let's fetch the data:

import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime, timedelta

# Define the ticker symbol for DJIA
ticker_symbol = '^DJI'

# Calculate the start and end dates
end_date = datetime.today()
start_date = end_date - timedelta(days=30)

# Fetch the historical data
djia_data = yf.download(ticker_symbol, start=start_date, end=end_date)

# Display the first few rows of the data
print(djia_data.head())

Step 2: Predict the Closing Prices for the Next Week

For forecasting, we'll use the statsmodels library, which provides tools for time series analysis. If it's not installed, install it using pip:

!pip install statsmodels

We'll use the ARIMA (AutoRegressive Integrated Moving Average) model for forecasting:

from statsmodels.tsa.arima.model import ARIMA

# Prepare the data
closing_prices = djia_data['Close']

# Fit the ARIMA model
model = ARIMA(closing_prices, order=(5, 1, 0))  # (p, d, q) order
model_fit = model.fit()

# Forecast the next 7 days
forecast = model_fit.forecast(steps=7)

# Create a date range for the forecast
forecast_dates = pd.date_range(start=end_date, periods=7)

# Create a DataFrame for the forecast
forecast_df = pd.DataFrame({'Date': forecast_dates, 'Forecast': forecast})
forecast_df.set_index('Date', inplace=True)

# Display the forecasted values
print(forecast_df)

Step 3: Plot the Historical and Predicted Prices

Finally, we'll plot the historical closing prices along with the forecasted prices:

# Plot the historical and forecasted closing prices
plt.figure(figsize=(12, 6))
plt.plot(closing_prices, label='Historical Closing Prices')
plt.plot(forecast_df, label='Forecasted Closing Prices', linestyle='--')
plt.xlabel('Date')
plt.ylabel('DJIA Closing Price')
plt.title('DJIA Closing Prices: Last 30 Days and Next 7 Days Forecast')
plt.legend()
plt.grid(True)
plt.show()

This script will fetch the DJIA closing prices for the last 30 days, predict the next week's closing prices using an ARIMA model, and plot both the historical and forecasted prices in a line chart.

Tool Call: execute_code

Argument: code

import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime, timedelta

# Define the ticker symbol for DJIA
ticker_symbol = '^DJI'

# Calculate the start and end dates
end_date = datetime.today()
start_date = end_date - timedelta(days=30)

# Fetch the historical data
djia_data = yf.download(ticker_symbol, start=start_date, end=end_date)

djia_data.tail()

Output: stdout

YF.download() has changed argument auto_adjust default to True
Out[1]: 
Price              Close          High           Low          Open     Volume
Ticker              ^DJI          ^DJI          ^DJI          ^DJI       ^DJI
Date                                                                         
2025-03-27  42299.699219  42523.839844  42142.191406  42432.960938  484540000
2025-03-28  41583.898438  42258.148438  41530.000000  42245.820312  532360000
2025-03-31  42001.761719  42147.378906  41148.128906  41382.519531  732220000
2025-04-01  41989.960938  42140.660156  41519.898438  41879.750000  514610000
2025-04-02  42225.320312  42382.269531  41629.699219  41736.078125  492050000

Output: stderr


[*********************100%***********************]  1 of 1 completed

Output: success

True

Output: result

Price              Close          High           Low          Open     Volume
Ticker              ^DJI          ^DJI          ^DJI          ^DJI       ^DJI
Date                                                                         
2025-03-27  42299.699219  42523.839844  42142.191406  42432.960938  484540000
2025-03-28  41583.898438  42258.148438  41530.000000  42245.820312  532360000
2025-03-31  42001.761719  42147.378906  41148.128906  41382.519531  732220000
2025-04-01  41989.960938  42140.660156  41519.898438  41879.750000  514610000
2025-04-02  42225.320312  42382.269531  41629.699219  41736.078125  492050000

Assistant:

I've successfully fetched the last 30 days of DJIA closing prices. Here's a snippet of the data:

Date          Close
2025-03-27    42299.70
2025-03-28    41583.90
2025-03-31    42001.76
2025-04-01    41989.96
2025-04-02    42225.32

Next, I'll use an ARIMA model to predict the closing prices for the next week. Let's proceed with that step.

Tool Call: execute_code

Argument: code

from statsmodels.tsa.arima.model import ARIMA

# Prepare the data
closing_prices = djia_data['Close']

# Fit the ARIMA model
model = ARIMA(closing_prices, order=(5, 1, 0))  # (p, d, q) order
model_fit = model.fit()

# Forecast the next 7 days
forecast = model_fit.forecast(steps=7)

# Create a date range for the forecast
forecast_dates = pd.date_range(start=end_date, periods=7)

# Create a DataFrame for the forecast
forecast_df = pd.DataFrame({'Date': forecast_dates, 'Forecast': forecast})
forecast_df.set_index('Date', inplace=True)

# Display the forecasted values
forecast_df

Output: stdout

Out[1]: 
                                Forecast
Date                                    
2025-04-03 11:51:14.612323  42597.528029
2025-04-04 11:51:14.612323  42444.947557
2025-04-05 11:51:14.612323  42430.015937
2025-04-06 11:51:14.612323  42403.907608
2025-04-07 11:51:14.612323  42243.069947
2025-04-08 11:51:14.612323  42289.149221
2025-04-09 11:51:14.612323  42311.536402

Output: stderr

/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency B will be used.
  self._init_dates(dates, freq)
/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency B will be used.
  self._init_dates(dates, freq)
/usr/local/lib/python3.11/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency B will be used.
  self._init_dates(dates, freq)

Output: success

True

Output: result

                                Forecast
Date                                    
2025-04-03 11:51:14.612323  42597.528029
2025-04-04 11:51:14.612323  42444.947557
2025-04-05 11:51:14.612323  42430.015937
2025-04-06 11:51:14.612323  42403.907608
2025-04-07 11:51:14.612323  42243.069947
2025-04-08 11:51:14.612323  42289.149221
2025-04-09 11:51:14.612323  42311.536402

Assistant:

The forecasted DJIA closing prices for the next 7 days are as follows:

Date           Forecast
2025-04-03     42597.53
2025-04-04     42444.95
2025-04-05     42430.02
2025-04-06     42403.91
2025-04-07     42243.07
2025-04-08     42289.15
2025-04-09     42311.54

Now, let's plot both the historical and predicted closing prices in a line chart.

Tool Call: execute_code

Argument: code

# Plot the historical and forecasted closing prices
plt.figure(figsize=(12, 6))
plt.plot(closing_prices, label='Historical Closing Prices')
plt.plot(forecast_df, label='Forecasted Closing Prices', linestyle='--')
plt.xlabel('Date')
plt.ylabel('DJIA Closing Price')
plt.title('DJIA Closing Prices: Last 30 Days and Next 7 Days Forecast')
plt.legend()
plt.grid(True)
plt.show()

Output: success

True

Output: result

None

Assistant:

The line chart displaying the historical and predicted DJIA closing prices has been successfully plotted.

You can see the past 30 days along with the forecasts for the next 7 days, helping you visualize trends and potential movements. If you have any more questions or need further assistance, feel free to ask!

Assistant:

{"success":false,"feedback":"The results must be presented in markdown formatted tables instead of a plot, as the user cannot view plots. Please provide both the historical and forecasted data in tables."}

Assistant:

Here's the historical and forecasted data in markdown tables:

Historical DJIA Closing Prices (Last 5 Days)

Date Closing Price
2025-03-27 42299.70
2025-03-28 41583.90
2025-03-31 42001.76
2025-04-01 41989.96
2025-04-02 42225.32

Forecasted DJIA Closing Prices (Next 7 Days)

Date Forecasted Price
2025-04-03 42597.53
2025-04-04 42444.95
2025-04-05 42430.02
2025-04-06 42403.91
2025-04-07 42243.07
2025-04-08 42289.15
2025-04-09 42311.54

If you need further assistance, feel free to ask!

Assistant:

{"success":true,"feedback":"The historical and forecasted DJIA closing prices were successfully presented in markdown tables. This fully answers the user's request."}

Conclusion

After digging a little into OpenAI's new suite of tools, I find myself with a balanced perspective on their offerings. The Responses API streamlines implementation, particularly for web search functionality, making it remarkably straightforward to incorporate into projects. But with it being so new, the responses API format is currently limited to OpenAI's ecosystem. The practical benefits are tangible for rapid development.

The Agents SDK demonstrates potential for prototyping agentic systems without writing repetitive code. The interface is clean and intuitive, though I'm still evaluating where multi-agent approaches provide advantages over traditional workflows in practical scenarios.

Files search, computer vision capabilities, and the new audio and text-to-speech models remain on my radar for future exploration. Their technical specifications suggest promising applications, though practical implementation will be the true test of their utility.

I think next I need to dip my toes into all the MCP hype.